Advertisement

Biologia Plantarum

, 55:653 | Cite as

Inducible and constitutive expression of HvCBF4 in rice leads to differential gene expression and drought tolerance

  • T. Lourenço
  • N. Saibo
  • R. Batista
  • C. Pinto Ricardo
  • M. M. Oliveira
Article

Abstract

The effects of the ectopic expression of a barley transcription factor (HvCBF4) under the control of a constitutive (maize Ubi1) or a stress-inducible (Arabidopsis RD29A) promoter in the abiotic stress response in rice (Oryza sativa L.) was investigated. The transformed plants were analyzed both at molecular and physiological level and the AtRD29A::HvCBF4 plants were further analyzed using the GeneChip® rice genome array under control conditions. Only the plants constitutively expressing HvCBF4 have shown increased survival to drought stress, but not to cold or high-salinity. These plants have also shown better photosynthetic capacity, as determined by chlorophyll fluorescence. Plants expressing AtRD29A::HvCBF4 did not show increased survival to any of the stresses applied. However in the GeneChip® microarray, these plants have shown up-regulation of many stress-responsive genes (> 400) as compared to non-transformed plants. Interestingly, RT-PCR analysis revealed not only differential gene expression between roots and shoots, but also between transgenic lines with the different promoters. Our results indicate that different HvCBF4 expression levels resulted in different transcriptomes and drought tolerance. Given that AtRD29A::HvCBF4 plants did not show increased tolerance to any of the imposed stresses, we may conclude that this promoter may be inappropriate for rice transformation aiming for enhanced abiotic stress tolerance.

Additional key words

abiotic stress chlorophyll fluorescence microarray analysis Oryza sativa transcription factors transformation 

Abbreviations

ΦPS2

efficiency of the photosystem 2 photochemistry

ETR

electron transfer rate

qP

photochemical quenching

qN

non-photochemical quenching

RWC

relative water content

Notes

Acknowledgments

This work was financially supported by Fundação para a Ciência e a Tecnologia and Fundo Social Europeu through a PhD (SFRH/BD/10615/2002) and Post-Doc fellowships (SFRH/BPD/14541/2003) to TL and NS, respectively, and for the research project POCTI/BIA-BCM/56063/2004. The authors would also like to acknowledge Dr. Timothy Close (University of California, Riverside, USA) for the HvCBF4 clone.

References

  1. Agarwal, P.K., Jha, B.: Transcription factors in plants and ABA dependent and independent abiotic stress signalling. — Biol. Plant. 54: 201–212, 2010.CrossRefGoogle Scholar
  2. Baker, S.S., Wilhelm, K.S., Thomashow, M.F.: The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. — Plant mol. Biol. 24: 701–713, 1994.PubMedCrossRefGoogle Scholar
  3. Barr, H.D., Weatherley, P.E.: A re-examination of the relative turgidity technique for estimating water deficit in leaves. — Aust. J. biol. Sci. 15: 413–428, 1962.Google Scholar
  4. Behnam, B., Kikuchi, A., Celebi-Toprak, F., Kasuga, M., Yamaguchi-Shinozaki, K., Watanabe, K.N.: Arabidopsis rd29A::DREB1A enhances freezing tolerance in transgenic potato. — Plant Cell Rep. 26: 1275–1282, 2007.PubMedCrossRefGoogle Scholar
  5. Bhatnagar-Mathur, P., Devi, M.J., Reddy, D.S., Lavanya, M., Vadez, V., Serraj, R., Yamaguchi-Shinozaki, K., Sharma, K.K.: Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. — Plant Cell Rep. 26: 2071–2082, 2007.PubMedCrossRefGoogle Scholar
  6. Boyer, J.S.: Plant productivity and environment. — Science 218: 443–448, 1982.PubMedCrossRefGoogle Scholar
  7. Choi, D.W., Rodriguez, E.M., Close, T.J.: Barley Cbf3 gene identification, expression pattern, and map location. — Plant Physiol. 129: 1781–1787, 2002.PubMedCrossRefGoogle Scholar
  8. Christensen, A.H., Quail, P.H.: Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. — Transgenic Res. 5: 213–218, 1996.PubMedCrossRefGoogle Scholar
  9. Cullings, K.W.: Design and testing of a plant-specific PCR primer for ecological and evolutionary studies. — Mol. Ecol. 1: 233–240, 1992.CrossRefGoogle Scholar
  10. Doyle, J.J., Doyle, J.L.: A rapid DNA isolation procedure for small quantities of fresh leaf tissue. — Phytochem. Bull. 19: 11–15, 1987.Google Scholar
  11. Dubouzet, J.G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E.G., Miura, S., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. — Plant J. 33: 751–763, 2003.PubMedCrossRefGoogle Scholar
  12. Fryer, M.J., Andrews, J.R., Oxborough, K., Blowers, D.A., Baker, N.R.: Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature. — Plant Physiol. 116: 571–580, 1998.PubMedCrossRefGoogle Scholar
  13. Garg, A.K., Kim, J.K., Owens, T.G., Ranwala, A.P., Choi, Y.D., Kochian, L.V., Wu, R.J.: Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. — Proc nat. Acad. Sci. USA 99: 15898–15903, 2002.PubMedCrossRefGoogle Scholar
  14. Gilmour, S.J., Sebolt, A.M., Salazar, M.P., Everard, J.D., Thomashow, M.F.: Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. — Plant Physiol. 124: 1854–1865, 2000.PubMedCrossRefGoogle Scholar
  15. Gilmour, S.J., Zarka, D.G., Stockinger, E.J., Salazar, M.P., Houghton, J.M., Thomashow, M.F.: Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. — Plant J. 16: 433–442, 1998.PubMedCrossRefGoogle Scholar
  16. Haake, V., Cook, D., Riechmann, J.L., Pineda, O., Thomashow, M.F., Zhang, J.Z.: Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. — Plant Physiol. 130: 639–648, 2002.PubMedCrossRefGoogle Scholar
  17. Hiei, Y., Ohta, S., Komari, T., Kumashiro, T.: Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. — Plant J. 6: 271–282, 1994.PubMedCrossRefGoogle Scholar
  18. Hsieh, T.H., Lee, J.T., Charng, Y.Y., Chan, M.T.: Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. — Plant Physiol. 130: 618–626, 2002.PubMedCrossRefGoogle Scholar
  19. Hu, X.J., Zhang, Z.B., Xu, P., Fu, Z.Y., Hu, S.B., Song, W.Y.: Multifunctional genes: the cross-talk among the regulation networks of abiotic stress responses. — Biol. Plant. 54: 213–223, 2010.CrossRefGoogle Scholar
  20. Ito, Y., Katsura, K., Maruyama, K., Taji, T., Kobayashi, M., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. — Plant Cell Physiol. 47: 141–153, 2006.PubMedCrossRefGoogle Scholar
  21. Jaglo, K.R., Kleff, S., Amundsen, K.L., Zhang, X., Haake, V., Zhang, J.Z., Deits, T., Thomashow, M.F.: Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. — Plant Physiol. 127: 910–917, 2001.PubMedCrossRefGoogle Scholar
  22. Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O., Thomashow, M.F.: Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. — Science 280: 104–106, 1998.PubMedCrossRefGoogle Scholar
  23. Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K.: Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. — Nat. Biotechnol. 17: 287–291, 1999.PubMedCrossRefGoogle Scholar
  24. Kasuga, M., Miura, S., Shinozaki, K., Yamaguchi-Shinozaki, K.: A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. — Plant Cell Physiol. 45: 346–350, 2004.PubMedCrossRefGoogle Scholar
  25. Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K.: Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. — Plant Cell 10: 1391–1406, 1998.PubMedCrossRefGoogle Scholar
  26. Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence - a practical guide. — J. exp. Bot. 51: 659–668, 2000.PubMedCrossRefGoogle Scholar
  27. Nakashima, K., Yamaguchi-Shinozaki, K.: Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. — Physiol. Plant. 126: 62–71, 2006.CrossRefGoogle Scholar
  28. Oh, S.J., Kwon, C.W., Choi, D.W., Song, S.I., Kim, J.K.: Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. — Plant Biotechnol. J. 5: 646–656, 2007.PubMedCrossRefGoogle Scholar
  29. Oh, S.J., Song, S.I., Kim, Y.S., Jang, H.J., Kim, S.Y., Kim, M., Kim, Y.K., Nahm, B.H., Kim, J.K.: Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. — Plant Physiol. 138: 341–351, 2005.PubMedCrossRefGoogle Scholar
  30. Ono, A., Izawa, T., Chua, N.H., Shimamoto, K.: The rab16B promoter of rice contains two distinct abscisic acidresponsive elements. — Plant Physiol. 112: 483–491, 1996.PubMedCrossRefGoogle Scholar
  31. Pellegrineschi, A., Reynolds, M., Pacheco, M., Brito, R.M., Almeraya, R., Yamaguchi-Shinozaki, K., Hoisington, D.: Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. — Genome 47: 493–500, 2004.PubMedCrossRefGoogle Scholar
  32. Pino, M.T., Skinner, J.S., Park, E.J., Jeknic, Z., Hayes, P.M., Thomashow, M.F., Chen, T.H.: Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield. — Plant Biotechnol. J. 5: 591–604, 2007.PubMedCrossRefGoogle Scholar
  33. Rueb, S., Leneman, M., Schilperoort, R.A., Hensgens, L.A.M.: Efficient plant regeneration through somatic embryogenesis from callus induced on mature rice embryos (Oryza sativa L.). — Plant Cell Tissue Organ Cult. 36: 259–264, 1994.CrossRefGoogle Scholar
  34. Sakamoto, H., Maruyama, K., Sakuma, Y., Meshi, T., Iwabuchi, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and highsalinity stress conditions. — Plant Physiol. 136: 2734–2746, 2004.PubMedCrossRefGoogle Scholar
  35. Savitch, L.V., Allard, G., Seki, M., Robert, L.S., Tinker, N.A., Huner, N.P., Shinozaki, K., Singh, J.: The effect of overexpression of two Brassica CBF/DREB1-like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napus. — Plant Cell Physiol. 46: 1525–1539, 2005.PubMedCrossRefGoogle Scholar
  36. Seki, M., Narusaka, M., Abe, H., Kasuga, M., Yamaguchi-Shinozaki, K., Carninci, P., Hayashizaki, Y., Shinozaki, K.: Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. — Plant Cell 13: 61–72, 2001.PubMedCrossRefGoogle Scholar
  37. Skinner, J.S., Von Zitzewitz, J., Szucs, P., Marquez-Cedillo, L., Filichkin, T., Amundsen, K., Stockinger, E.J., Thomashow, M.F., Chen, T.H., Hayes, P.M.: Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. — Plant mol. Biol. 59: 533–551, 2005.PubMedCrossRefGoogle Scholar
  38. Stockinger, E.J., Gilmour, S.J., Thomashow, M.F.: Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. — Proc. nat. Acad. Sci. USA 94: 1035–1040, 1997.PubMedCrossRefGoogle Scholar
  39. Tamura, K., Dudley, J., Nei, M., Kumar, S.: MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. — Mol. Biol. Evol. 24: 1596–1599, 2007.PubMedCrossRefGoogle Scholar
  40. Thomashow, M.F.: plant cold acclimation: freezing tolerance genes and regulatory mechanisms. — Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 571–599, 1999.PubMedCrossRefGoogle Scholar
  41. Umezawa, T., Fujita, M., Fujita, Y., Yamaguchi-Shinozaki, K., Shinozaki, K.: Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. — Curr. Opin. Biotechnol. 17: 113–122, 2006.PubMedCrossRefGoogle Scholar
  42. Vogel, J.T., Zarka, D.G., Van Buskirk, H.A., Fowler, S.G., Thomashow, M.F.: Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. — Plant J. 41: 195–211, 2005.PubMedCrossRefGoogle Scholar
  43. Wang, W., Vinocur, B., Altman, A.: Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. — Planta 218: 1–14, 2003.PubMedCrossRefGoogle Scholar
  44. Xue, G.P.: The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of lowtemperature responsive genes in barley is modulated by temperature. — Plant J. 33: 373–383, 2003.PubMedCrossRefGoogle Scholar
  45. Yamaguchi-Shinozaki, K., Shinozaki, K.: A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. — Plant Cell 6: 251–264, 1994.PubMedCrossRefGoogle Scholar
  46. Yoshida, S., Forno, D.A., Cock, J.H., Gomez, K.A.: Laboratory Manual for Physiological Studies of Rice. — International Rice Research Institute, Manila 1976.Google Scholar
  47. Zhang, J.Z., Creelman, R.A., Zhu, J.K.: From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. — Plant Physiol. 135: 615–621, 2004.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • T. Lourenço
    • 1
  • N. Saibo
    • 1
  • R. Batista
    • 1
    • 2
  • C. Pinto Ricardo
    • 1
  • M. M. Oliveira
    • 1
  1. 1.ITQB-Universidade Nova de LisboLaboratório de Genómica de Plantas em StressOeirasPortugal
  2. 2.Instituto Nacional de Saúde Dr. Ricardo JorgeLisboaPortugal

Personalised recommendations