Biologia Plantarum

, Volume 55, Issue 3, pp 536–540 | Cite as

Introduction of OsglyII gene into Oryza sativa for increasing salinity tolerance

  • S. H. WaniEmail author
  • S. S. Gosal
Brief Communication


Mature seed-derived embryogenic calli of indica rice (Oryza sativa L. cv. PAU201) were induced on semisolid Murashige and Skoog medium supplemented with 2.5 mg dm−3 2,4-dichlorophenoxyacetic acid + 0.5 mg dm−3 kinetin + 560 mg dm−3 proline + 30 g dm−3 sucrose + 8 g dm−3 agar. Using OsglyII gene, out of 3180 calli bombarded, 32 plants were regenerated on medium containing hygromycin (30 mg dm−3). Histochemical GUS assay of the hygromycin selected calli revealed GUS expression in 50 % calli. Among the regenerants, 46.87 % were GUS positive. PCR analysis confirmed the presence of the transgene of 1 kb in 60 % of independent plants. Further, these plants have been grown to maturity in glasshouse. In vitro screening for salt tolerance showed increase in fresh mass of OsglyII putative transgenic calli (185.4 mg) as compared to control calli (84.2 mg) on 90 mM NaCl after 15 d. When exposed to 150 mM NaCl, OsglyII putative transgenic plantlets showed normal growth while the non-transgenic control plantlets turned yellow and finally did not survive.

Additional key words

embryonic callus growth regulators GUS expression hygromycin proline rice 





2,4-dichlorophenoxyacetic acid






napthaleneacetic acid

Osgly II

Oryza sativa glyoxalase II


particle delivery system




5-bromo-4-chloro-3-indolyl-β-D-glucuronic acid cyclohexylammonium salt


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We are grateful to Prof. Sudhir Kumar Sopory, Group Leader, Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg110 067, New Delhi, India, for kindly providing the Osgly II gene construct and Department of Biotechnology, Govt.of India, New Delhi for funding support.


  1. Aghaleh, M., Niknam, V., Ebrahimzadeh, H., Razavi, K.: Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea. — Biol. Plant. 53: 243–248, 2009.CrossRefGoogle Scholar
  2. Akita, S., Cabuslay, G.S.: Physiological basis of differential response to salinity in rice lands. — In: Proc. 3rd Int. Symp. Genet. Aspects Plant Mineral Nutr. Pp. 37. Braunschweig 1988.Google Scholar
  3. Benderradji, L., Bouzerzou, H., Djekoun, A., Yekhlef, N., Benmahammed, A.: Effects of NaCl stress on callus proliferation and plant regeneration from mature embryos of bread wheat (Triticum aestivum L.) cultivars Mahon demias and Hidhab. — Plant Tissue Cult. Biotechnol. 17: 19–27, 2007.Google Scholar
  4. Christou, P., Ford, T.L., Kofron, M.: Production of transgenic rice (Oryza sativa L.) plants from agronomically important Indica and Japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. — Bio/Technology 9: 957–962, 1991.CrossRefGoogle Scholar
  5. Deswal, R., Sopory, S.K.: Purification and partial characterrization of glyoxalase I from a higher plant B. juncea. — FEBS Lett. 282: 277–280, 1991.PubMedCrossRefGoogle Scholar
  6. Deswal, R., Chakravarty, T.N., Sopory, S.K.: The glyoxalase system in higher plants: regulation in growth and differentiation. — Biochem. Soc. Trans. 21: 527–530, 1993.PubMedGoogle Scholar
  7. Espartero, J., Sanchez-Aguayo, I., Pardo, J.M.: Molecular characterization of glyoxalase I from a higher plant: upregulation by stress. — Plant mol. Biol. 29, 1223-1233, 1995.Google Scholar
  8. Gosal, S.S., Wani, S.H., Kang, M.S.: Biotechnology and drought tolerance. — J. Crop Improv. 23: 19–54, 2009.CrossRefGoogle Scholar
  9. Hasegawa, P.M., Bressan, R.A., Zhu, J.K., Bohnert, H.J.: Plant cellular and molecular responses to high salinity. — Annu. Rev. Plant Physiol. Plant mol. Biol. 51: 463–499, 2000.PubMedCrossRefGoogle Scholar
  10. Hoque, E.H., Mansfield, J.W.: Effect of genotype and explant age on callus induction and subsequent plant regeneration from root-derived callus of Indica rice genotypes. — Plant Cell Tissue Organ Cult. 78: 217–223, 2004.CrossRefGoogle Scholar
  11. Jain, M., Choudhary, D., Kale, R.K., Bhalla-Sarin, N.: Salt- and glyphosate-induced increase in glyoxalase I activity in cell lines of groundnut (Arachis hypogaea). — Physiol. Plant. 114: 499–505, 2002.PubMedCrossRefGoogle Scholar
  12. Johansen, K.S., Svendsen, II., Rasmussen, S.K.: Purification and cloning of the two domain glyoxalase I from wheat bran. — Plant Sci. 155: 11–20, 2000.PubMedCrossRefGoogle Scholar
  13. Lafitte, H., Bennet, J.: Requirement for aerobic rice. Physiological and Molecular Considerations. — In: Bouman, B.A.M., Hengsdijk, H., Hardy, B. (ed.): Water-Wise Rice Production. Pp. 253. International Rice Research Institute, Los Baños 2003.Google Scholar
  14. Maqbool, S.B., Husnain, T., Riazuddin, S., Masson, L., Christou, P.: Effective control of yellow stem borer and rice leaf folder in transgenic rice Indica varieties Basmati 370 and M7 using the novel delta-endotoxin cry2A Bacillus thuringiensis gene. — Mol. Breed. 4: 501–507, 1998.CrossRefGoogle Scholar
  15. Mitsuoka, K., Honda, H., Xing, X.H., Unno, H.: Effect of intracellular 2,4-D concentration on plantlet regeneration of rice (Oryza sativa L.) callus. — Appl. Microbiol. Biotechnol. 42: 364–366, 1994.Google Scholar
  16. Murashige, T., Skoog, F.: A revised method for rapid growth and bioassays with tobacco tissue cultures. — Physiol. Plant. 15: 473–479, 1962.CrossRefGoogle Scholar
  17. Mutlu, S., Atici, O., Nalbantoglu, B.: Effects of salicylic acid and salinity on apoplastic antioxidant enzymes in two wheat cultivars differing in salt tolerance. — Biol. Plant. 53: 334–338, 2009.CrossRefGoogle Scholar
  18. Oszvald, M., Kang, T.J., Tomoskozi, S., Jenes, B., Kim, T.G., Cha, Y.S., Tamas, L., Yang, M.S.: Expression of cholera toxin B subunit in transgenic rice endosperm. — Mol. Biotechnol. 40: 261–268, 2008.PubMedCrossRefGoogle Scholar
  19. Paulus, C., Knollner, B., Jacobson, H.: Physiological and biochemical characterization of glyoxalase I, a general marker for cell proliferation, from a soybean cell suspension. — Planta 189: 561–566, 1993.PubMedCrossRefGoogle Scholar
  20. Singh, A.K., Ansari, M.W., Pareek, A., Singla-Pareek, S.L.: Raising salinity tolerant rice: recent progress and future perspectives. — Physiol. mol. Biol. Plants 14: 137–154, 2008.CrossRefGoogle Scholar
  21. Singla-Pareek, S.L., Reddy, M.K., Sopory, S.K.: Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. — Proc. nat. Acad. Sci. USA 93: 13404–13409, 2003.Google Scholar
  22. Singla-Pareek, S.L., Yadav, S.K., Pareek, A., Reddy, M.K., Sopory, S.K.: Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. — Transgenic Res. 17: 171–180, 2008.PubMedCrossRefGoogle Scholar
  23. Skipsey, M., Andrews, C.J., Townson, J.K., Jepson, I., Edwards, R.: Cloning and characterization of glyoxalase I from soybean. — Arch. Biochem. Biophys. 374: 261–268, 2000.PubMedCrossRefGoogle Scholar
  24. Su, J., Hirji, R., Zhang, L., He, C., Selvaraj, G., Wu, R.: Evaluation of the stress-inducible production of choline oxidase in transgenic rice as a strategy for producing the stress-protectant glycine betaine. — J. exp. Bot. 57: 1129–1135, 2006.PubMedCrossRefGoogle Scholar
  25. Tarczynski, M.C., Jensen, R.G., Bohnert H.J.: Expression of a bacterial mtlD gene in transgenic tobacco leads to production and accumulation of mannitol. — Proc. nat. Acad. Sci. USA 89: 2600–2604, 1992.PubMedCrossRefGoogle Scholar
  26. Thach, T.N., Pant, R.C.: In vitro study on salt tolerance in rice. — Omonrice 7: 80–88, 1999.Google Scholar
  27. Veena Reddy, V.S., Sopory, S.K.: Glyoxalase I from Brassica juncea: molecular cloning, regulation and its overexpression confer tolerance in transgenic tobacco under stress. — Plant J. 17: 385–395, 1999.CrossRefGoogle Scholar
  28. Yeo, A.R., Yeo, M.E., Flowers, S.A., and Flowers, T.J.: Screening of rice (Oryza sativa L.) genotypes for physiological characters contributing to salinity resistance, and their relationship to overall performance. — Theor. appl. Genet. 79: 377–384, 1990.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Plant Breeding and Genetics PAULudhianaIndia
  2. 2.School of Agricultural Biotechnology PAULudhianaIndia

Personalised recommendations