Biologia Plantarum

, Volume 55, Issue 3, pp 528–535

Special origin of stem sequence influence the resistance of hairpin expressing plants against PVY

  • F. Jiang
  • B. Wu
  • C. Zhang
  • Y. Song
  • H. An
  • C. Zhu
  • F. Wen
Original Papers


In this study, 16 hairpin RNA (hpRNA) vectors were constructed, each harboring 50 bp viral RNA sequence as the stem. They all targeted the coat protein (CP) gene of Potato virus Y (PVY). Virus resistance assay revealed that hairpin constructs targeting the anterior 200 bp regions of the CP gene were unable to induce virus resistance, while the 12 hpRNA constructs targeting posterior 600 bp regions induced high virus resistance up to 77.78 %. Northern blot analysis revealed that 50 bp-length hpRNA constructs could be transcribed efficiently and processed into siRNAs; however, no correlation between siRNA accumulation and degree of antiviral defense was observed. Results presented here indicated that the middle and 3′ end of the CP cDNA was important for hpRNA-mediated PVY resistance, improving the design of pathogen-derived hpRNA expression cassettes for transgenic plant against viruses.

Additional key words

Agrobacterium tumefaciens hpRNA-mediated virus resistance Nicotiana tabacum RNA silencing 



cauliflower mosaic virus




coat protein


day post-inoculation


double strand RNA




post-transcriptional gene silencing


Potato virus Y


sodium chloride/sodium citrate


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abhary, M.K., Anfoka, G.H., Nakhla, M.K., Maxwell, D.P.: Post-transcriptional gene silencing in controlling viruses of the tomato yellow leaf curl virus complex. — Arch. Virol. 151: 2349–2363, 2006.PubMedCrossRefGoogle Scholar
  2. Almeida, R., Allshire, R.C.: RNA silencing and genome regulation. — Trends Cell Biol. 15: 251–258, 2005.PubMedCrossRefGoogle Scholar
  3. Bernstein, E., Caudy, A.A., Hammond, S.M., Hannon, G.J.: Role for a bidentate ribonuclease in the initiation step of RNA interference. — Nature 409: 363–366, 2001.PubMedCrossRefGoogle Scholar
  4. Bhattacharjee, B., Mohan, M., Nair, S.: Transformation of chickpea: effect of genotype, explant, Agrobacterium-strain and composition of culture medium. — Biol. Plant. 54: 21–32, 2010.CrossRefGoogle Scholar
  5. Burundukova, O.L., Sapotsky, M.V., Kochetov, A.V., Trifonova, E.A., Malinovsky, V.I.: Dark and light green tissues of tobacco leaves systemically infected with tobacco mosaic virus. — Biol. Plant. 53: 294–300, 2009.CrossRefGoogle Scholar
  6. Duan, C.G., Wang, C.H., Fang, R.X., Guo, H.S.: Artificial microRNAs highly accessible to targets confr efficient virus resistance in plants. — J. Virol. 82: 11084–11095, 2008.PubMedCrossRefGoogle Scholar
  7. Helliwell, C., Waterhouse, P.: Constructs and methods for high-throughput gene silencing in plants. — Methods 30: 289–295, 2003.PubMedCrossRefGoogle Scholar
  8. Holen, T., Amarzguioui, M., Wiiger, M.T., Babaie, E., Prydz, H.: Positional effects of short interfering RNAs targeting the human coagulation trigger tissue factor. — Nucl. Acids Res. 30: 1757–1766, 2002.PubMedCrossRefGoogle Scholar
  9. Horsch, R.B., Fry, J.E., Hoffman, N.L., Eichholz, D., Rogers, S.G., Fraley, R.T.: A simple and general method for transforming genes into plants. — Science 227: 1229–1231, 1985.CrossRefGoogle Scholar
  10. Kertbundit, S., Pongtanom, N., Ruanjan, P., Chantasingh, D., Tanwanchai, A., Panyim, S., Juricek, M.: Resistance of transgenic papaya plants to papaya ringspot virus. — Biol. Plant. 51: 333–339, 2007.CrossRefGoogle Scholar
  11. Li, P., Song, Y.Z., Liu, X.L., Zhu, C.X., Wen, F.J.: Study of virus resistance mediated by inverted repeats derived from 5′ and 3′ ends of coat protein gene of Potato virus Y. — Acta phytopathol. sin. 37: 69–72, 2007.Google Scholar
  12. Liu, Z.Z., Wang, J.L., Huang, X., Xu, W.H., Liu, Z.M., Fang, R.X.: The promoter of a rice glycine-rich protein gene, Osgrp-2, confers vascular-specific expression in transgenic plants. — Planta 216: 824–833, 2003.PubMedGoogle Scholar
  13. Luo, K.Q., Chang, D.C.: The gene-silencing efficiency of siRNA is strongly dependent on the local structure of mRNA at the targeted region. — Biochem. Biophys. Res. Commun. 318: 303–310, 2004.PubMedCrossRefGoogle Scholar
  14. Missiou, A., Kalantidis, K., Boutla, A., Tzortzakaki, S., Tabler, M., Tsagris, M.: Generation of transgenic potato plants highly resistant to potato virus Y (PVY) through RNA silencing. — Mol. Breed 14: 185–197, 2004.CrossRefGoogle Scholar
  15. Mohanpuria, P., Rana, N.K., Yadav, S.K.: Transient RNAi based gene silencing of glutathione synthetase reduces glutathione content in Camellia sinensis (L.) O. Kuntze somatic embryos. — Biol. Plant. 52: 381–384, 2008.CrossRefGoogle Scholar
  16. Nykänen, A., Haley, B., Zamore, P.D.: ATP requirements and small interfering RNA structure in the RNA interference pathway. — Cell 107: 309–321, 2001.PubMedCrossRefGoogle Scholar
  17. Overhoff, M., Alken, M., Far, R.K., Lemaitre, M., Lebleu, B., Sczakiel, G., Robbins, I.: Local RNA target structure influences siRNA efficacy: a systematic global analysis. — J. mol. Biol. 348: 871–881, 2005.PubMedCrossRefGoogle Scholar
  18. Prins, M., Goldbach, R.: RNA-mediated virus resistance in transgenic plants. — Arch. Virol. 141: 2259–2276, 1996.PubMedCrossRefGoogle Scholar
  19. Sambrook, J., Russell, D.W.: Molecular Cloning: a Laboratory Manual. — Cold Spring Harbour Laboratory Press, New York 2001.Google Scholar
  20. Sanford, J.C., Johnson, S.A.: The concept of parasite-derived resistance: deriving resistance genes from the parasite own genome. — J. theor. Biol. 115: 395–405, 1985.CrossRefGoogle Scholar
  21. Schubert, S., Grünweller, A., Erdmann, V.A., Kurreck, J.: Local RNA target structure influences siRNA efficacy: systematic analysis of intentionally designed binding regions. — J. mol. Biol. 348: 883–893, 2005.PubMedCrossRefGoogle Scholar
  22. Smith, N.A., Singh, S.P., Wang, M.B., Stoutjesdijk, P.A., Green, A.G., Waterhouse, P.M.: Gene expression: total silencing by intron-spliced hairpin RNAs. — Nature 407: 319–320, 2000.PubMedCrossRefGoogle Scholar
  23. Stoutjesdijk, P.A., Singh, S.P., Liu, Q., Hurlstone, C.J., Waterhouse, P.A., Green, A.G.: Hp-RNA-mediated targeting of the Arabidopsis FAD2 gene gives highly efficient and stable silencing. — Plant Physiol. 129: 1723–1731, 2002.PubMedCrossRefGoogle Scholar
  24. Tomita, R., Hamada, T., Horiguchi, G., Iba, K., Kodama, H.: Transgene overexpression with cognate small interfering RNA in tobacco. — FEBS Lett. 573: 117–120, 2004.PubMedCrossRefGoogle Scholar
  25. Urcuqui-Inchima, S., Haenni, A.L., Bernardi, F.: Potyvirus proteins: a wealth of functions. — Virus Res. 74: 157–175, 2001.PubMedCrossRefGoogle Scholar
  26. Vickers, T.A., Koo, S., Bennett, C.F., Crooke, S.T., Dean, N.M., Baker, B.F.: Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents. — J. biol. Chem. 278: 7108–7118, 2003.PubMedCrossRefGoogle Scholar
  27. Wesley, S.V., Helliwell, C.A., Smith, N.A., Wang, M.B., Rouse, D.T., Liu, Q., Gooding, P.S., Singh, S.P., Abbott, D., Stoutjesdijk, P.A., Robinson, S.P., Gleave, A.P., Green, A.G., Waterhouse, P.M.: Construct design for efficient, effective and high throughput gene silencing in plants. — Plant J. 27: 581–590, 2001.PubMedCrossRefGoogle Scholar
  28. Yoshinari, K., Miyagishi, M., Taira, K.: Effects on RNAi of the tight structure, sequence and position of the targeted region. — Nucl. Acids Res. 32: 691–699, 2004.PubMedCrossRefGoogle Scholar
  29. Zamore, P.D.: Ancient pathways programmed by small RNAs. — Science 296: 1265–1269, 2002.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • F. Jiang
    • 1
  • B. Wu
    • 1
  • C. Zhang
    • 1
  • Y. Song
    • 1
  • H. An
    • 1
  • C. Zhu
    • 1
  • F. Wen
    • 1
  1. 1.State Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTaian, ShandongP.R. China

Personalised recommendations