Advertisement

Biologia Plantarum

, Volume 55, Issue 2, pp 383–386 | Cite as

Cadmium accumulation and tolerance in Populus nigra and Salix alba

  • M. ZacchiniEmail author
  • V. Iori
  • G. Scarascia Mugnozza
  • F. Pietrini
  • A. Massacci
Brief Communication

Abstract

Rooted cuttings of Populus nigra L. clone Poli and Salix alba L. clone SS5 were treated for three weeks with 50 μM CdSO4 in nutrient solution. The willow showed a far higher Cd tolerance, expressed as tolerance index (Ti), than the poplar in both roots and leaves. The root Cd content was higher in poplar than in willow, whereas in leaves the opposite was found. As a consequence, the translocation factor (Tf) revealed a greater ability of Cd transport in willow than in poplar. Cd treatment enhanced cysteine, γ-glutamylcysteine and reduced glutathione contents in roots of both species, whereas in leaves they were only enhanced in poplar. Furthermore, only poplar leaves showed an enhanced content of phytochelatins, whereas malic and citric acids rose in response to Cd only in the willow leaves. Cd treatment increased putrescine, spermidine and spermine contents in both roots and leaves of the willow, whereas in poplar only the putrescine content was enhanced in roots.

Additional key words

citric acid cysteine malic acid phytochelatins polyamines poplar thiols translocation factor willow 

Abbreviations

Cys

cysteine

γ-EC

γ-glutamylcysteine

GSH

glutathione

OAs

organic acids

PAs

polyamines

PCs

phytochelatins

Put

putrescine

Spd

spermidine

Spm

spermine

Tf

translocation factor

Ti

tolerance index

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was funded by MIUR (Ministry for Education, University and Research) under PRIN 2005 project No. 2005-072892. Authors also wish to thank Antonio Barchetti (CRA-RPS) for his valuable technical assistance.

References

  1. Bhatia, N.P., Walsh, K.B., Baker, A.J.M.: Detection and quantification of ligands involved in nickel detoxification in a herbaceous Ni hyperaccumulator Stackousia tryonii Bailey. — J. exp. Bot. 56: 1343–1349, 2005.PubMedCrossRefGoogle Scholar
  2. Callahan, L.D., Baker, A.J.M., Kolev, S.D., Wedd A.G.: Metal ion ligands in hyperaccumulating plants. — J. biol. inorg. Chem. 11: 2–12, 2006.PubMedCrossRefGoogle Scholar
  3. Chen, Y.X., Lin, Q., Luo, Y.M., He, Y.F, Zhen, S.J, Yu, Y.L., Tian, G.M., Wong, M.H.: The role of citric acid on the phytoremediation of heavy metal contaminated soil. — Chemosphere 50: 807–811, 2003.PubMedCrossRefGoogle Scholar
  4. Clemens, S.: Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. — Biochimie 88: 1707–1719, 2006.PubMedCrossRefGoogle Scholar
  5. Cobbett, C.S.: Phytochelatins and their roles in heavy metal detoxification. — Plant Physiol. 123: 825–833, 2000.PubMedCrossRefGoogle Scholar
  6. Dos Santos Utmazian, M.N., Wieshammer, G., Vega, R., Wenzel, W.W.: Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. — Environ. Pollut. 148: 155–165, 2007.PubMedCrossRefGoogle Scholar
  7. Durand, T.C., Hausman, J.F., Carpin, S., Alberic, P., Baillif, P., Label, P., Morabito, D.: Zinc and cadmium effects on growth and ion distribution in Populus tremula × Populus alba. — Biol. Plant. 54: 191–194, 2009.CrossRefGoogle Scholar
  8. Greger, M., Landberg, T.: Use of willow in phytoextraction. — Int. J. Phytoremed. 1: 115–123, 1999.CrossRefGoogle Scholar
  9. Groppa, M.D., Iannuzzo, M.P, Tomaro, M.L., Benavides, M.P.: Polyamine metabolism in sunflower plants under long-term cadmium or copper stress. — Amino Acids 32: 265–275, 2007.PubMedCrossRefGoogle Scholar
  10. Landberg, T., Greger, M.: No phytochelatin (PC2 and PC3) detected in Salix viminalis. — Physiol. Plant. 121: 481–487, 2004.CrossRefGoogle Scholar
  11. Løvaas, E.: Antioxidative and metal-chelating effects of polyamines. — Adv. Pharmacol. 38: 119–149, 1997.PubMedCrossRefGoogle Scholar
  12. Lunáčková, L., Masarovičová, E., Králová, K., Streško, V.: Response of fast growing woody plants from family Salicaceae to cadmium treatment. — Bull. Environ. Contam. Toxicol. 70: 576–585, 2003.PubMedCrossRefGoogle Scholar
  13. Lunáčková, L., Šottníková, A., Masarovičová, E., Lux, A., Streško, V.: Comparison of cadmium effect on willow and poplar in response to different cultivation conditions. — Biol. Plant. 47: 403–411, 2003/4.CrossRefGoogle Scholar
  14. Markowska, Y.K., Gorinova, N.I., Nedkovska, M.P., Miteva, K.M.: Cadmium-induced oxidative damage and antioxidative responses in Brassica juncea plants. — Biol. Plant. 53: 151–154, 2009.CrossRefGoogle Scholar
  15. Meister, A.: Glutathione metabolism. — Meth. Enzymol. 251: 3–13, 1995.PubMedCrossRefGoogle Scholar
  16. Mendoza-Cózatl, D.G., Moreno-Sanchez, R.: Control of glutathione and phytochelatin synthesis under cadmium stress. Pathway modelling for plants. — J. theor. Biol. 238: 919–936, 2006.PubMedCrossRefGoogle Scholar
  17. Pietrini, F., Zacchini, M., Iori, V., Pietrosanti, L., Ferretti, M., Massacci, A.: Spatial distribution of cadmium in leaves and its impact on photosynthesis: examples of different strategies in willow and poplar clones. — Plant Biol. 12: 355–363, 2010.PubMedCrossRefGoogle Scholar
  18. Saber, N.E., Abdel-Moneim, A.M., Barakat S.Y.: Role of organic acids in sunflower tolerance to heavy metals. — Biol. Plant. 42: 65–73, 1999.CrossRefGoogle Scholar
  19. Sanità di Toppi, L., Gabbrielli, R.: Responses to cadmium in higher plants. — Environ. exp. Bot. 41: 105–130, 1999.CrossRefGoogle Scholar
  20. Sharma, S.S., Dietz, K.J.: The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. — J. exp. Bot. 57: 711–726, 2006.PubMedCrossRefGoogle Scholar
  21. Shützendübel, A., Polle, A.: Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. — J. exp. Bot. 53: 1351–1365, 2002.CrossRefGoogle Scholar
  22. Stroiński, A., Chadzinikolau, T., Giżewska, K., Zielezińska, M.: ABA or cadmium induced phytochelatin synthesis in potato tubers. — Biol. Plant. 54: 117–120, 2010.CrossRefGoogle Scholar
  23. Zacchini, M., De Agazio, M.: Spread of oxidative damage and antioxidative response through tobacco callus cell layers after UV-C pulse treatment. — Plant Physiol. Biochem. 42: 445–450, 2004.PubMedCrossRefGoogle Scholar
  24. Zacchini, M., Pietrini, F., Scarascia Mugnozza, G., Iori, V., Pietrosanti, L., Massacci, A.: Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. — Water Air Soil Pollut. 197: 23–34, 2009.CrossRefGoogle Scholar
  25. Zacchini, M., Rea, E., Tullio, M., De Agazio, M.: Increased antioxidative capacity in maize calli during and after oxidative stress induced by a long lead treatment. — Plant Physiol. Biochem. 41: 49–54, 2003.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • M. Zacchini
    • 1
    Email author
  • V. Iori
    • 1
  • G. Scarascia Mugnozza
    • 2
  • F. Pietrini
    • 1
  • A. Massacci
    • 1
  1. 1.Institute of Agro-environmental and Forest BiologyCNRMonterotondo Scalo, RomaItaly
  2. 2.Department of Agronomy, Forestry and Land UseCRARomaItaly

Personalised recommendations