Advertisement

Biologia Plantarum

, Volume 55, Issue 1, pp 1–15 | Cite as

Problems and possibilities of monocot transformation

  • P. Sood
  • A. BhattacharyaEmail author
  • A. Sood
Review

Abstract

Biotechnological improvement of monocots is often hampered by the lack of efficient regeneration systems, requisite wound responses and low cell competence. Despite these limitations, the biolistic and Agrobacterium methods have been successfully used to produce several transgenic monocots by adjusting the parameters that govern efficient delivery and integration of transgene(s) into plant genome. It is now possible to transform even difficult monocots using tailor-made gene constructs and promoters, suitable A. tumefaciens strains and a proper understanding of the entire process. This success has been reviewed in the present article and a special emphasis was laid on the measures that were taken in overcoming the difficulties that arise due to the differential responses of monocots and dicots. This information is necessary for biotechnological improvement of still newer monocotyledonous plants that have been hitherto difficult to transform.

Additional key words

Agrobacterium microprojectile bombardment tailor-made gene constructs 

Abbreviations

FISH

fluorescence in situ hybridization

NLS

nuclear localization signal

NSE

nuclear signal E1

PEG

polyethylene glycol

vir

virulence

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are grateful to CSIR and the director, IHBT for providing the requisite facilities for carrying out this work. Priyanka Sood also acknowledges the Council of Scientific and Industrial Research (CSIR), India for providing financial assistance in the form of Senior Research Fellowship. IHBT Publication number: 0745.

References

  1. Abumhadi, N., Kamenarova, K., Todorovska, E., Dimov, G., Takumi, S., Nakamura, C., Anzai, H., Atanassov, A.: Effects of three promoters in barley transformation by particle bombardment of mature and immature embryos. — Biotechnol. Biotechnol. Equip. 19: 63–69, 2005.Google Scholar
  2. Aguado Santacruz, G.A., Rascón Cruz, Q., Cabrera Ponce, J.L., Martínez Hernández, A., Olalde Portugal, V., Herrera Estrella, L.: Transgenic plants of blue grama grass, Bouteloua gracilis (H.B.K.) Lag. ex Steud., from microprojectile bombardment of highly chlorophyllous embryogenic cells. — Plant Cell Rep. 104: 763–771, 2002.Google Scholar
  3. Aldemita, R.R, Hodges, T.K.: Agrobacterium tumefaciens-mediated transformation of japonica and indica rice varieties. — Planta 199: 612–617, 1996.CrossRefGoogle Scholar
  4. Alt-Morbe, J., Kuhlmann, H., Schroder, J.: Differences in induction of Ti plasmid virulence genes virG and virD, and continued control of virD expression by four external factors. — Mol. Plant-Microbe Interact. 2: 301–308, 1989.CrossRefGoogle Scholar
  5. Aragao, F.J.L., Grossi de Sa, M.F., Davey, M.R., Brasileiro, A.C.M., Faria, J.C., Rech, E.L.: Factors influencing transient gene expression in bean (Phaseolus vulgaris L.) using an electrical particle acceleration device. — Plant Cell Rep. 12: 483–490, 1993.CrossRefGoogle Scholar
  6. Arencibia, A.D., Carmona, E.R., Tellez, P., Chan, M.T., Yu, S.M., Trujillo, L.E., Oramas, P.: An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens. — Transgenic Res. 7: 1–10, 1998.CrossRefGoogle Scholar
  7. Armstrong, C.L., Rout, J.R.: A novel Agrobacterium-mediated plant transformation method. — Int. Patent Publ. WOO1/09302 A2. 2001.Google Scholar
  8. Ashby, A.M., Watson, M.D., Loake, G.J., Shaw, C.H.: Ti plasmid-specified chemotaxis of Agrobacterium tumefaciens C58C1 toward vir-inducing phenolic compounds and soluble factors from monocotyledonous and dicotyledonous plants. — J. Bacteriol. 170: 4181–4187, 1988.PubMedGoogle Scholar
  9. Ashby, A.M., Watson, M.D., Shaw, C.H.: A Ti-plasmid determined function is responsible for chemotaxis towards the plant wound product acetosyringone. — FEMS Microbiol. Lett. 41: 189–192, 1987.CrossRefGoogle Scholar
  10. Assem, S.K., El-Itriby, H.A., Hussein Ebtissam, H.A., Saad, M.E., Madkour, M.A.: Comparison of the efficiency of some novel maize promoters in monocot and dicot plants. — Arab. J. Biotechnol. 5: 57–66, 2002.Google Scholar
  11. Aulinger, E., Peter, S.O., Schmid, J.E., Stamp, P.: Gametic embryos of maize as a target for biolistic transformation: comparison to immature zygotic embryos. — Plant Cell Rep. 21: 585–591, 2003.PubMedGoogle Scholar
  12. Azhakanandam, K., McCabe, M.S., Power, J.B., Lowe, K.C., Cocking, E.C., Davey, M.R.: T-DNA transfer, integration, expression and inheritance in rice: effects of plant genotype and Agrobacterium super-virulence. — J. Plant Physiol. 157: 429–439, 2000.Google Scholar
  13. Back, A., Jung, S.: The lack of plastidal transit sequence cannot override the targeting capacity of Bradyrhizobium japonicum 5-aminolevulinic acid synthase in transgenic rice. — Biol. Plant. 54: 279–284, 2010.CrossRefGoogle Scholar
  14. Baron, C., Zambryski, P.C.: The plant response in pathogenesis, symbiosis, and wounding: variations on a common theme? — Annu. Rev. Genet. 29: 107–129, 1995.PubMedCrossRefGoogle Scholar
  15. Barton, K.A., Binns, A.N., Matzke, A.J.M., Chilton, M.D.: Regeneration of intact tobacco plants containing full length copies of genetically engineered T-DNA and transmission of T-DNA to R1 progeny. — Cell 32: 1033–1043, 1983.PubMedCrossRefGoogle Scholar
  16. Becker, D., Brettschneider, R., Lörz, H.: Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. — Plant J. 5: 299–307, 1994.PubMedCrossRefGoogle Scholar
  17. Bekkaoui, F., Datla, R.S.S., Pilon, M., Tautonts, T.E., Crosby, W.L., Dunstan, D.I.: The effects of promoter on transient expression in conifer cell lines. — Theor. appl. Genet. 79: 353–359, 1990.CrossRefGoogle Scholar
  18. Binns, A.N.: Agrobacterium mediated gene delivery and the biology of host range limitations. — Physiol. Plant. 79: 135–139, 1990.CrossRefGoogle Scholar
  19. Binns, A.N., Thomashow, M.F.: Cell biology of Agrobacterium infection and transformation of plants. — Annu. Rev. Microbiol. 42: 575–606, 1988.CrossRefGoogle Scholar
  20. Birch, R.G.: Plant transformation: problems and strategies for practical application. — Annu. Rev. Plant Physiol. Plant mol. Biol. 48: 297–326, 1997.PubMedCrossRefGoogle Scholar
  21. Birch, R.G., Franks, T.: Development and optimisation of microprojectile systems for plant genetic transformation. — Aust. J. Plant Physiol. 18: 453–470, 1991.CrossRefGoogle Scholar
  22. Bottinger, P., Steinmetz, A., Scheider, O., Pickardt, T.: Agrobacterium mediated transformation of Vicia faba. — Mol. Breed. 8: 243–254, 2001.CrossRefGoogle Scholar
  23. Boulton, M.I., Steinkellner, H., Donson, J., Markham, P.G., King, D.I., Davies, J.W.: Mutational analysis of the virionsense genes of maize streak virus. — J. gen. Virol. 70: 2309–2323, 1989.PubMedCrossRefGoogle Scholar
  24. Bower, R., Birch, R.G.: Transgenic sugarcane plants via microprojectile bombardment. — Plant J. 2: 409–416, 1992.CrossRefGoogle Scholar
  25. Braun, A.C.: Conditioning of the host cell as a factor in the transformation process in crown gall. — Growth 16: 65–74, 1952.PubMedGoogle Scholar
  26. Brencic, A., Angert, E.R., Winans, S.C.: Unwounded plants elicit Agrobacterium vir gene induction and T-DNA transfer: transformed plant cells produce opines yet are tumor free. — Mol. Microbiol. 57: 1522–1531, 2005.PubMedCrossRefGoogle Scholar
  27. Bussingler, M., Hurst, J., Flavell, R.: DNA methylation and regulation of globin gene expression. — Cell 34: 197–206, 1983.CrossRefGoogle Scholar
  28. Bytebier, B., Deboeck, F., Greve, H.D., Van Montagu, M., Hernalsteens, J.P.: T-DNA organization in tumor cultures and transgenic plants of monocotyledon Asparagus officinalis. — Proc. nat. Acad. Sci. USA 84: 5345–5349, 1987.PubMedCrossRefGoogle Scholar
  29. Callis, J., Fromm, M., Walbot, V.: Introns increase gene expression in cultured maize cells. — Genes Dev. 1: 1183–1200, 1987.PubMedCrossRefGoogle Scholar
  30. Cao, J., Duan, X., McElroy, D., Wu, R.: Regeneration of herbicide resistant transgenic rice plants following microprojectile-mediated transformation of suspension culture cells. — Plant Cell Rep. 11: 586–591, 1992.CrossRefGoogle Scholar
  31. Carpita, N.C.: Structure and biogenesis of the cell walls of grasses. — Annu. Rev. Plant Physiol. Plant mol. Biol. 47: 445–476, 1996.PubMedCrossRefGoogle Scholar
  32. Carrer, H., Hockenberry, T.N., Svab, V., Maliga, P.: Kanamycin resistance as a selectable marker for plastid transformation in tobacco. — Mol. gen. Genet. 241: 49–56, 1993.PubMedCrossRefGoogle Scholar
  33. Cassells, A.C., Curry, R.F.: Oxidative stress and physiological, epigenetic and genetic variability in plant tissue culture: implications for micropropagators and genetic engineers. — Plant Cell Tissue Organ Cult. 64: 145–157, 2001.CrossRefGoogle Scholar
  34. Chan, M.T., Chang, H.H., Ho, S.L., Tong, W.F., Yu, S.M.: Agrobacterium-mediated production of transgenic rice plants expressing a chimeric α-amylase promoter/β-glucuronidase gene. — Plant mol. Biol. 22: 491–506, 1993.PubMedCrossRefGoogle Scholar
  35. Chan, M.T., Lee, T.M., Chan, H.H.: Transformation of indica rice (Oryza sativa L.) mediated by Agrobacterium tumefaciens. — Plant Cell Physiol. 33: 577–583, 1992.Google Scholar
  36. Chen, D.F., Dale, P.J.: A comparison of methods for delivering DNA to wheat: the application of wheat dwarf virus DNA to seeds with exposed apical meristems. — Transgenic Res. 1: 93–100, 1992.CrossRefGoogle Scholar
  37. Chen, W.H., Davey, M.R., Power, J.B., Cocking, E.C.: Sugarcane protoplasts: factors affecting division and plant regeneration. — Plant Cell Rep. 7: 344–347, 1988.CrossRefGoogle Scholar
  38. Cheng, M., Fry, J.E., Pang, S., Zhou, H., Hironaka, C.M., Duncan, D.R., Conner, T.W., Wan, Y.: Genetic transformation of wheat mediated by Agrobacterium tumefaciens. — Plant Physiol. 115: 971–980, 1997.PubMedGoogle Scholar
  39. Cheng, M., Hu, T.C., Layton, J., Liu, C.N., Fry, J.E.: Dessication of plant tissues post-Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat. — In Vitro cell. dev. Biol. Plant 39: 595–604, 2003.CrossRefGoogle Scholar
  40. Cheng, M.I., Jarret, R.L.I., Li, Z.I., Xing, A.I., Demski, J.W.: Production of fertile transgenic peanut (Arachis hypogea L.) plants using Agrobacterium tumefaciens. — Plant Cell Rep. 15: 653–657, 1996.CrossRefGoogle Scholar
  41. Chibbar, R.N., Kartha, K.K., Datla, R.S.S., Leung, N., Caswell, K., Mallard, C.S., Steinhauer, L.: The effect of different promoter-sequences on transient expression of gus reporter gene in cultured barley (Hordeum vulgare L.) cells. — Plant Cell Rep. 12: 506–509, 1993.CrossRefGoogle Scholar
  42. Cho, M.J., Choi, H.W., Lemaux, P.G.: Transformed T0 orchardgrass (Dactylis glomerata L.) plants produced from highly regenerative tissues derived from mature seeds. — Plant Cell Rep. 20: 318–324, 2001.CrossRefGoogle Scholar
  43. Cho, M.J., Ha, C.D., Lemaux, P.G.: Production of transgenic tall fescue and red fescue plants by particle bombardment of mature seed-derived highly regenerative tissues. — Plant Cell Rep. 19: 1084–1089, 2000.CrossRefGoogle Scholar
  44. Cho, M.J., Jiang, W., Lemaux, P.G.: Transformation of recalcitrant barley cultivars through improvement of regenerability and decreased albinism. — Plant Sci. 138: 229–244, 1998.CrossRefGoogle Scholar
  45. Cho, M.J., Jiang, W., Lemaux, P.G.: High-frequency transformation of oat via microprojectile bombardment of seed derived highly regenerative cultures. — Plant Sci. 148: 917, 1999.CrossRefGoogle Scholar
  46. Christou, P.: Genetic engineering of crop legumes and cereals: current status and recent advances. — Agro-food-industry Hi-Tech March/April: 17–27, 1994.Google Scholar
  47. Christou, P., Ford, T.L., Kofron, M.: Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. — Biotechnology 9: 957–962, 1991.CrossRefGoogle Scholar
  48. Christou, P., Platt, S.G., Ackerman, M.C.: Opine synthesis in wild type plant tissue. — Plant Physiol. 82: 218–221, 1986.PubMedCrossRefGoogle Scholar
  49. Citovsky, V., Warnick, D., Zambryski, P.: Nuclear import of Agrobacterium VirD2 and VirE2 proteins in maize and tobacco. — Proc. nat. Acad. Sci. USA 91: 3210–3214, 1994.PubMedCrossRefGoogle Scholar
  50. Dalton, S.J., Bettany, A.J.E., Timms, E., Morris, P.: Cotransformed, diploid Lolium perenne (perennial ryegrass), Lolium multiflorum (Italian ryegrass) and Lolium temulentum (darnel) plants produced by microprojectile bombardment. — Plant Cell Rep. 18: 721–726, 1999.CrossRefGoogle Scholar
  51. Datta, S.K., Peterhans, A., Datta, K., Potrykus, I.: Genetically engineered fertile indica-rice recovered from protoplasts. — Biotechnology 14: 315–319, 1990.Google Scholar
  52. De Cleene, M., De Ley, J.: The host range of crown gall. — Bot. Rev. 42: 389–466, 1976.CrossRefGoogle Scholar
  53. Delbreil, B., Guerche, P., Jullien, M.: Agrobacterium mediated transformation of Asparagus officinalis L. long term embryogenic callus and regeneration of transgenic plants. — Plant Cell Rep. 12: 129–132, 1993.CrossRefGoogle Scholar
  54. D’Halluin, K., Bonne, E., Bossut, M., De Beuckeleer, M., Leemans, J.: Transgenic maize plants by tissue electroporation. — Plant Cell 4: 1495–1505, 1992.PubMedCrossRefGoogle Scholar
  55. Dierk, S.: Resistance response physiology and signal transduction. — Curr. Biol. 1: 305–310, 1998.Google Scholar
  56. Domisse, E.M., Leuing, D.W.M., Shaw, M., Conner, A.J.: Onion is a monocotyledonous host for Agrobacterium. — Plant Sci. 69: 249–257, 1990.CrossRefGoogle Scholar
  57. Dong, J., Kharb, P., Teng, W., Hall, T.C.: Characterization of rice transformed via an Agrobacterium-mediated inflorescence transformation. — Mol. Breed. 7: 187–194, 2001.CrossRefGoogle Scholar
  58. Dong, J., Teng, W., Buchholz, W.G., Hall, T.C.: Agrobacterium-mediated transformation of Javanica rice. — Mol. Breed. 2: 267–276, 1996.CrossRefGoogle Scholar
  59. Dong, J.Z., McHughen, A.: Patterns of transformation intensity on flax hypocotyls inoculated with Agrobacterium tumefaciens. — Plant Cell Rep. 10: 555–560, 1991.CrossRefGoogle Scholar
  60. Dong, S., Qu, R.: High efficiency transformation of tall fescue with Agrobacterium tumefaciens. — Plant Sci. 168: 1453–1458, 2005.CrossRefGoogle Scholar
  61. Dong, S., Shew, H.D., Tredway, L.P., Lu, J., Sivamani, E., Miller, E.S., Qu, R.: Expression of the bacteriophage T4 lysozyme gene in tall fescue confers resistance to gray leaf spot and brown patch diseases. — Transgenic Res. 17: 47–57, 2008.PubMedCrossRefGoogle Scholar
  62. Douglas, C., Halperin, W., Gordon, M., Nester, E.: Specific attachment of Agrobacterium tumefaciens to bamboo cells in suspension cultures. — J. Bacteriol. 161: 764–766, 1985.PubMedGoogle Scholar
  63. Draper, J., Mackenzie, A., Davey, M.R., Freeman, J.P.: Attachment of Agrobacterium tumefaciens to mechanically isolated Asparagus cells. — Plant Sci. Lett. 29: 227–236, 1983.CrossRefGoogle Scholar
  64. Enriquez Obregon, G.A., Prieto Samsonov, D.L., De la Riva, G.A., Perez, M.I., Selman Housein, G., Vazquz Padron, R.I.: Agrobacterium mediated japonica rice transformation a procedure assisted by an anti-necrotic treatment. — Plant Cell Tissue Organ Cult. 59: 159–168l, 1999.CrossRefGoogle Scholar
  65. Enriquez Obregon, G.A., Vazquez Padron, R.I., Prieto Samsonov, D.L., De la Riva, G.A., Selman-Housein, G.: Herbicide resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium-mediated transformation. — Planta 206: 20–27, 1998.CrossRefGoogle Scholar
  66. Enriquez Obregon, G.A., Vazquez Padron, R.I., Prieto Samsonov, D.L., Perez, M., Selman-Housein, G.: Genetic transformation of sugarcane by Agrobacterium tumefaciens using antioxidants compounds. — Biotechnol. Aplicada 14: 169–174, 1997.Google Scholar
  67. Finer, J.J., McMullen, M.D.: Transformation of soybean via particle bombardment of embryogenic suspension culture tissue. — In Vitro cell. dev. Biol. Plant 27: 175–182, 1991.CrossRefGoogle Scholar
  68. Frame, B.R., Drayton, P.R., Bragnall, S.V., Lewnau, C.J., Bullock, W.P., Wilson, H.M., Dunwell, J.M., Thompson, J.A., Wang, K.: Production of fertile transgenic maize plants by silicon carbide whisker-mediated transformation. — Plant J. 6: 941–948, 1994.CrossRefGoogle Scholar
  69. Frame, B.R., Shou, H., Chikwamba, R.K., Zhang, Z.I., Xiang, C.I., Fonger, T.M., Pegg, S.E.K., Li, B., Nettleton, D.S., Pei, D., Wang, K.: Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. — Plant Physiol. 129: 13–22, 2002.PubMedCrossRefGoogle Scholar
  70. Franks, T., Birch, R.G.: Gene transfer into intact sugarcane cells using microprojectile bombardment. — Aust. J. Plant Physiol. 18: 471–480, 1991.CrossRefGoogle Scholar
  71. Fromm, M.E., Morrish, F., Armstrong, C., Williams, R., Thomas, J., Klien, T.M.: Inheritance and expression of chimeric genes in the progeny of maize plants. — Biotechnology 8: 833–839, 1990.PubMedCrossRefGoogle Scholar
  72. Gao, F., Chen, J.-M., Xiong, A.-S., Peng, R.-H., Liu, J.-G., Cai, B., Yao, Q.-H.: Isolation and chatacterization of a novel AP2/EREBP-type treanscription factor OsAP211 in Oryza sativa. — Biol. Plant. 53: 643–649, 2009.CrossRefGoogle Scholar
  73. Gordan Kamm, W.J., Spencer, M.T., Mangano, M.L., Adams, T.R., Daines, R.J., Start, W.G., O’Brien, J.V., Chambers, S.A., Adams, W.R., Jr, Willets, N.G., Rice, T.B., Mackey, C.J., Krueger, R.W., Kausch, A.P., Lemaux, P.G.: Transformation of maize cells and regeneration of fertile transgenic plants. — Plant Cell 2: 603–618, 1990.CrossRefGoogle Scholar
  74. Gould, J., Devey, M., Hasegawa, O., Ulian, E.C., Paterson, G., Smith, R.H.: Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot tip. — Plant Physiol. 95: 426–434, 1991.PubMedCrossRefGoogle Scholar
  75. Graves, A.E., Goldman, S.L.: The transformation of Zea mays seedlings with Agrobacterium tumefaciens. — Plant mol. Biol. 7: 43–50, 1986.CrossRefGoogle Scholar
  76. Graves, A.C.F., Goldman, S.L.: Agrobacterium tumefaciensmediated transformation of the monocot genus Gladiolus: detection of expression of T-DNA encoded genes. — J. Bacteriol. 169: 1745–1746, 1987.PubMedGoogle Scholar
  77. Graves, A.E., Goldman, S.L., Banks, S.W., Graves, A.C.F.: Scanning electron microscope studies of Agrobacterium tumefaciens attachment to Zea mays, Gladiolus sp. and Triticum aestivum. — J. Bacteriol. 170: 2395–2400, 1988.PubMedGoogle Scholar
  78. Grimsley, N.H.: Agroinfection. — Physiol. Plant. 79: 147–153, 1990.CrossRefGoogle Scholar
  79. Grimsley, N., Hohn, B., Ramos, C., Kado, C., Rogowsky, P.: DNA transfer from Agrobacterium to Zea mays or Brassica by agroinfection is dependent on bacterial virulence functions. — Mol. gen. Genet. 217: 309–316, 1989.PubMedCrossRefGoogle Scholar
  80. Grimsley, N.H., Ramos, C., Hein, T., Hohn, B.: ’Agroinfection’ an alternative route for viral infection of plants by using the Ti plasmid. — Proc. nat. Acad. Sci. USA 83: 3282–3286, 1986.PubMedCrossRefGoogle Scholar
  81. Grimsley, N.H., Ramos, C., Hein, T., Hohn, B.: Meristematic tissues of maize plants are most susceptible to Agroinfection with maize streak virus. — Biotechnology 6: 185–189, 1988.CrossRefGoogle Scholar
  82. Guo, G.Q., Maiwald, F., Lorenzen, P., Steinbiss, H.H.: Factors influencing T-DNA transfer into wheat and barley cells by Agrobacterium tumefaciens. — Cereal Res. Commun. 26: 15–22, 1998.Google Scholar
  83. Hansen, G., Das, A., Chilton, M.D.: Constitutive expression of the virulence genes improves the efficiency of plant transformation by Agrobacterium. — Proc. nat. Acad. Sci. USA 91: 7603–7607, 1994.PubMedCrossRefGoogle Scholar
  84. Hansen, G., Shillito, R.D., Chilton, M.D.: T-strand integration in maize protoplasts after codelivery of a T-DNA substrate and virulence genes. — Proc. nat. Acad. Sci. USA 94: 11726–11730, 1997.PubMedCrossRefGoogle Scholar
  85. Hashizume, F., Tsuchiya, T., Ugaki, M., Niwa, Y., Tachibana, N., Kowyama, Y.: Efficient Agrobacterium mediated transformation and the usefulness of a synthetic GFP reporter gene in leading varieties of japonica rice. — Plant Biotechnol. 16: 397–401, 1999.Google Scholar
  86. Hayashimoto, A., Li, Z., Murai, N.: A polyethylene glycolmediated protoplast transformation system for production of fertile transgenic rice plants. — Plant Physiol. 93: 857–863, 1990.PubMedCrossRefGoogle Scholar
  87. He, D.G., Mouradov, A., Yang, Y.M., Mouradova, E., Scott, K.J.: Transformation of wheat (Triticum aestivum L.) through electroporation of protoplasts. — Plant Cell Rep. 14: 192–196, 1994.CrossRefGoogle Scholar
  88. Heath, J.D., Boulton, M.I., Raineri, D.M., Doty, S.L., Mushegian, A.R., Charles, T.C., Davies, J.W., Nester, E.W.: Discrete regions of the sensor protein Ira determine the strain-specific ability of Agrobacterium to infect maize. — Mol. Plant-Microbe Interact. 10: 221–227, 1997.PubMedCrossRefGoogle Scholar
  89. Hernalsteens, J.P., Thia Toong, L., Schell, J., Van Montagu, M.: An Agrobacterium transformed cell culture from the monocot Asparagus officinalis. — EMBO J. 13: 3039–3041, 1984.Google Scholar
  90. Hiei, Y., Komari, T., Kubo, T.: Transformation of rice mediated by Agrobacterium tumefaciens. — Plant mol. Biol. 35: 205–218, 1997.PubMedCrossRefGoogle Scholar
  91. Hiei, Y., Ohta, S., Komari, T., Kumashiro, T.: Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. — Plant J. 6: 271–281, 1994.PubMedCrossRefGoogle Scholar
  92. Hooykaas, P.J.J.: Transformation of plant cells via Agrobacterium. — Plant mol. Biol. 13: 327–336, 1989.PubMedCrossRefGoogle Scholar
  93. Hooykaas van Slogteren, G.M.S., Hooykaas, P.J.J., Schilperoort, R.A.: Expression of Ti plasmid genes in monocotyledonous plants infected with Agrobacterium tumefaciens. — Nature 311: 763–764, 1984.CrossRefGoogle Scholar
  94. Ishida, Y., Satio, H., Ohta, S., Hiei, Y., Komari, T., Kumashiro, T.: High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. — Nature Biotechnol. 14: 745–750, 1996.CrossRefGoogle Scholar
  95. Jin, S., Komari, T., Gordon, M.P., Nester, E.W.: Genes responsible for the supervirulence phenotype of Agrobacterium tumefaciens A281. — J. Bacteriol. 169: 4417–4425, 1987.PubMedGoogle Scholar
  96. Kaeppler, H.F., Somers, D.A., Rines, H.W., Cockburn, A.F.: Silicon-carbide fiber-mediated stable transformation of plant cells. — Theor. appl. Genet. 84: 560–566, 1992.CrossRefGoogle Scholar
  97. Kahl, G.: Molecular biology of wound healing: the conditioning phenomenon. — In: Kahl, G., Schell, J. (ed.): Molecular Biology of Plant Tumors. Pp. 211–268. Academic Press, New York 1982.Google Scholar
  98. Karami, O., Esna-Ashari, M., Karimi Kurdistani, G., Aghavaisi, B.: Agrobacterium-mediated genetic transformation of plants: the role of host. — Biol. Plant. 53: 201–212, 2009.CrossRefGoogle Scholar
  99. Kartha, K.K., Chibbar, R.N., Georges, F., Leung, N., Caswell, K., Kendall, E., Qureshi, J.: Transient expression of chloramphenicol acetlytransferase (CAT) gene in barley cell cultures and immature embryos through microprojectile bombardment. — Plant Cell Rep. 8: 429–432, 1989.CrossRefGoogle Scholar
  100. Khrustaleva, L.I., Kik, C.: Localization of single-copy T-DNA insertion in transgenic shallots (Allium cepa) by using ultrasensitive FISH with tyramide signal amplification. — Plant J. 25: 699–707, 2001.PubMedCrossRefGoogle Scholar
  101. Kieliszewski, M.J., Leykam, J.F., Lamport Derek, T.A.: Structure of the threonine-rich extensin from Zea mays. — Plant Physiol. 92: 316–326, 1990.PubMedCrossRefGoogle Scholar
  102. Kim, H.K., Lemaux, P.G., Buchanan, B.B., Cho, M.J.: Reduction of genotype limitation in wheat (Triticum aestivum L.) transformation. — J. Soc. in Vitro Biol. 35: 43A, 1999.Google Scholar
  103. Kim, S.R., Lee, J., Jun, S.H., Park, S., Kang, H.G., Kwon, S., An, G.: Transgene structures in T-DNA-inserted rice plants. — Plant mol. Biol. 52: 761–773, 2003.PubMedCrossRefGoogle Scholar
  104. Klein, T.M., Gradziel, T., Fromm, M.E., Sanford, J.C.: Factors influencing gene delivery into Zea mays cells by high velocity microprojectiles. — Biotechnology 6: 559–563, 1988.CrossRefGoogle Scholar
  105. Klein, T.M., Kornstein, L., Fromm, M.E.: Genetic transformation of maize cells by particle bombardment and the influence of methylation on foreign-gene expression. — In: Gustafson, J.P. (ed.): Gene Manipulation in Plant Improvement II. Pp. 265–288. Plenum Press, New York 1990.Google Scholar
  106. Klein, T.M., Roth, B.A., Fromm, M.E.: Regulation of anthocyanin biosynthetic genes introduced into intact maize tissues by microprojectiles. — Proc. nat. Acad. Sci. USA 86: 6681–6685, 1989.PubMedCrossRefGoogle Scholar
  107. Komari, T.: Transformation of callus cultures of nine plant species mediated by Agrobacterium. — Plant Sci. 60: 223–229, 1989.CrossRefGoogle Scholar
  108. Koncz, C., Németh, K., Redei, G.P., Scell, J.: — In: Paszkowski, J. (ed.): Homologous Recombination and Gene Silencing in Plants. Pp. 167–189. Kluwer Academic Publishers, Dordrecht 1994.Google Scholar
  109. Kondo, T., Hasegawa, H., Suzuki, M.: Transformation and regeneration of garlic (Allium sativum L.) by Agrobacterium mediated gene transfer. — Plant Cell Rep. 19: 989–993, 2000.CrossRefGoogle Scholar
  110. Kumar, N., Pandey, S., Bhattacharya, A., Ahuja, P.S.: Do leaf surface characteristics affect Agrobacterium infection in tea [Camellia sinensis (L.) O Kuntze]? — J. Biosci. 29: 309–317, 2004.PubMedCrossRefGoogle Scholar
  111. Kumlehn, J., Serazetdinora, L., Hensel, G., Becker, D., Loerz, H.: Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen culture with Agrobacterium tumefaciens. — Plant Biotechnol. J. 4: 251–258, 2006.PubMedCrossRefGoogle Scholar
  112. Kumria, R., Waie, B., Rajam, M.V.: Plant regeneration from transformed embryogenic callus of elite indica rice via Agrobacterium. — Plant Cell Tissue Organ Cult. 67: 63–71, 2001.CrossRefGoogle Scholar
  113. Last, D.I., Brettell, R.I.S., Chamberlain, D.A., Chaudhury, A.M., Larkin, P.J., Marsh, E.L, Peacock, W.J., Dennis, E.S.: pEmu: an improved promoter for gene expression in cereal cells. — Theor. appl. Genet. 81: 581–588, 1991.CrossRefGoogle Scholar
  114. Li, L., Qu, R., De Kochko, A., Fauquet, C., Beachy, R.N.: An improved rice transformation system using the biolistic method. — Plant Cell Rep. 12: 250–255, 1993.CrossRefGoogle Scholar
  115. Li, X.Q., Liu, C.N., Ritchie, S.T., Peng, J., Gelvin, S.B., Hodges, T.K.: Factors influencing Agrobacterium-mediated transient expression of gusA in rice. — Plant mol. Biol. 20: 1037–1048, 1992.PubMedCrossRefGoogle Scholar
  116. Lippincott, B.B., Lippincott, J.A.: Bacterial attachment to a specific wound site as an essential stage in tumor initiation by Agrobacterium tumefaciens. — J. Bacteriol. 97: 620–628, 1969.PubMedGoogle Scholar
  117. Lippincott, B.B., Whatley, M.H., Lippincott, J.A.: Tumor induction by Agrobacterium involves attachment of the bacterium to a site on the host plant cell wall. — Plant Physiol. 59: 388–390, 1977.PubMedCrossRefGoogle Scholar
  118. Lippincott, J.A., Lippincott, B.B.: Cell walls of crown-gall tumors and embryonic plant tissues lack Agrobacterium attachment sites. — Science 199: 1075–1077, 1978.PubMedCrossRefGoogle Scholar
  119. Liu, P., Nester, E.W.: Indoleacetic acid, a product of transferred DNA, inhibits vir gene expression and growth of Agrobacterium tumefaciens C58. — Proc. nat. Acad. Sci. USA 103: 4658–4662, 2006.PubMedCrossRefGoogle Scholar
  120. Lonsdale, D., Onde, S., Cumming, A.: Transient expression of exogenous DNA in intact, viable wheat embryos following particle bombardment. — J. exp. Bot. 41: 1161–1165, 1990.CrossRefGoogle Scholar
  121. Lucca, P., Ye, X., Potrykus, I.: Effective selection and regeneration of transgenic rice plants with mannose as selective agent. — Mol. Breed. 7: 43–49, 2001.CrossRefGoogle Scholar
  122. Luehrsen, K.R., Walbot, V.: Intron enhancement of gene expression and the splicing efficiency of introns in maize cells. — Mol. gen. Genet. 225: 81–93, 1991.PubMedCrossRefGoogle Scholar
  123. Mahalakshmi, A., Khurana, P.: Agrobacterium mediated cereal transformation: a critical appraisal. — Indian J. exp. Biol. 35: 416–426, 1997.Google Scholar
  124. Mahmood, T., Jan, A., Komatsu, S.: Proteomic analysis of bacterial blight defence signaling pathway using transgenic rice overexpressing thaumatin-like protein. — Biol. Plant. 53: 285–293, 2009.CrossRefGoogle Scholar
  125. Maresh, J., Zhang, J., Lynn, D.G.: The innate immunity of maize and the dynamic chemical strategies regulating two component signal transduction in Agrobacterium tumefaciens. — ACS Chem. Biol. 1: 165–175, 2006.PubMedCrossRefGoogle Scholar
  126. Martinez-Trujillo, M., Cabrera-Ponce, J.L., Herrera-Estrella, L.: Improvement of rice transformation using bombardment of scutellum-derived calli. — Plant mol. Biol. Rep. 21: 429–437, 2003.CrossRefGoogle Scholar
  127. Matzke, M.A., Matzke, A.J.M.: Differential inactivation and methylation of a transgene in plants by two suppressor loci containing homologous sequences. — Plant mol. Biol. 16: 821–830, 1991.PubMedCrossRefGoogle Scholar
  128. Matzke, M.A., Primig, M., Trnovsky, J., Matzke, A.J.M.: Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. — EMBO J. 8: 643–649, 1989.PubMedGoogle Scholar
  129. Messens, E., Dekeyser, R., Stachel, S.E.: A non-transformable Triticum monococcum monocotyledonous culture produces the potent Agrobacterium vir-inducing compound ethyl ferulate. — Proc. nat. Acad. Sci. USA 87: 4368–4372, 1990.PubMedCrossRefGoogle Scholar
  130. Mohanty, A., Sharma, N.P., Tyagi, A.K.: Agrobacteriummediated high frequency transformation of an elite indica rice variety Pusa Basmati1 and transmission of the transgene to R2 progeny. — Plant Sci. 147: 127–137, 1999.CrossRefGoogle Scholar
  131. Mooney, P.A., Goodwin, P.B.: Adherence of Agrobacterium tumefaciens to the cells of immature wheat embryos. — Plant Cell Tissue Organ Cult. 25: 199–208, 1991.Google Scholar
  132. Narasimhulu, S.B., Deng, X.B., Sarria, R., Gelvin, S.B.: Early transcription of Agrobacterium T-DNA genes in tobacco and maize. — Plant Cell 8: 873–886, 1996.PubMedCrossRefGoogle Scholar
  133. Naureby, B., Billing, K., Wyndaele, R.: Influence of the antibiotic timentin on plant regeneration compared to carbenicillin and cefotaxime in concentration suitable for elimination of Agrobacterium tumefaciens. — Plant Sci. 123: 169–177, 1997.CrossRefGoogle Scholar
  134. Neuhaus, G., Spangenberg, G., Mittelsten Scheid, O., Schweiger, H.G.: Transgenic rapeseed plants obtained by the microinjection of DNA into microspore-derived embryoids. — Theor. appl. Genet. 75: 30–36, 1987.CrossRefGoogle Scholar
  135. O’Kennedy, M.M., Burger, J.T., Berger, D.K.: Transformation of elite white maize using the particle inflow gun and detailed analysis of a low-copy integration event. — Plant Cell Rep. 20: 721–730, 2001.CrossRefGoogle Scholar
  136. Oard, J.H.: Physical methods for the transformation of plant cells. — Biotechnol. Adv. 9: 1–11, 1991.PubMedCrossRefGoogle Scholar
  137. Oh, S.J., Jeong, J.S., Kim, E.H., Yi, N.R., Yi, S.I., Jang, I.C., Kim, Y.S., Suh, S.C., Nahm, B.H., Kim, J.K.: Matrix attachment region from the chicken lysozyme locus reduces variability in transgene expression and confers copy number-dependence in transgenic rice plants. — Plant Cell Rep. 24: 145–154, 2005.PubMedCrossRefGoogle Scholar
  138. Olhoft, P.M., Flagel, L.E., Donovan, C.M., Somers, D.A.: Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. — Planta 216: 723–735, 2003.PubMedGoogle Scholar
  139. Olhoft, P.M., Somers, D.A.: L-cysteine increases Agrobacterium mediated T-DNA delivery into soybean cotyledonary-node cells. — Plant Cell Rep. 20: 706–711, 2001.CrossRefGoogle Scholar
  140. Park, S.H., Pinson, S.R.M., Smith, R.H.: T-DNA integration into genomic DNA of rice following Agrobacterium inoculation of isolated shoot apices. — Plant mol. Biol. 32: 1135–1148, 1996.PubMedCrossRefGoogle Scholar
  141. Perl, A., Kless, H., Blumenthal, A., Galili, G., Galun, E.: Improvement of plant regeneration and GUS expression in scutellar wheat calli by optimization of culture conditions and DNA-microprojectile delivery procedures. — Mol. gen. Genet. 235: 279–284, 1992.PubMedCrossRefGoogle Scholar
  142. Petolino, J.F., Hopkins, N.L., Kosegi, B.D., Skokut, M.: Genetic transformation and hybridization: Whiskermediated transformation of embryogenic callus of maize. — Plant Cell Rep. 19: 781–786, 2000.CrossRefGoogle Scholar
  143. Philipp, J., Rajbir, S.S., Aquad Arabi, M.E.L., Daniel, B., Sangwan-Norreel, B.S.: Influence of phenolic compounds on Agrobacterium vir gene induction and onion gene transfer. — Phytochemistry 40: 1623–1628, 1995.CrossRefGoogle Scholar
  144. Pinghua, C., Rukai, C.: Optimizing genetic transformation of sugarcane calluses via PDS-1000/He. — J. Fujian Agr. Forest. Univ. 33: 355–358, 2004.Google Scholar
  145. Popelka, J.C., Xu, J., Altpeter, F.: Generation of rye (Secale cereale L.) plants with low transgene copy number after biolistic gene transfer and production of instantly markerfree transgenic rye. — Transgenic Res. 12: 587–596, 2003.PubMedCrossRefGoogle Scholar
  146. Potrykus, I.: Gene transfer to cereals: an assessment. — Biotechnology 8: 535–542, 1990.CrossRefGoogle Scholar
  147. Potrykus, I.: Gene transfer to plants: assessment of published approaches and results. — Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 205–225, 1991.CrossRefGoogle Scholar
  148. Potrykus, I., Saul, M.W., Petruska, J., Paszkowski, J., Shillito, R.D.: Direct gene transfer to cells of a graminaceous monocot. — Mol. gen. Genet. 199: 183–188, 1985.CrossRefGoogle Scholar
  149. Prinsen, E., Bytebier, B., Hernalsteens, J.P., De Greef, J., Onckelen, V.H.: Functional expression of Agrobacterium tumefaciens T-DNA onc genes in Asparagus crown tissues. — Plant Cell Physiol. 31: 69–75, 1990.Google Scholar
  150. Raineri, D.M., Bottino, P., Gordon, M.P., Nester, E.W.: Agrobacterium-mediated transformation of rice (Oryza sativa L.). — Biotechnology 8: 33–38, 1990.CrossRefGoogle Scholar
  151. Raineri, D.M., Boulton, M.I., Davies, J.W., Nester, E.W.: VirA, the plant-signal receptor, is responsible for the Ti plasmidspecific transfer of DNA to maize by Agrobacterium. — Proc. nat. Acad. Sci. USA 90: 3549–3553, 1993.PubMedCrossRefGoogle Scholar
  152. Rancé, I., Tian, W., Mathews, H., de Kochko, A., Beachy, R.N., Fauquet, C.M.: Partial desiccation of mature embryoderived calli, a simple treatment that dramatically enhances the regeneration ability of indica rice. — Plant Cell Rep. 13: 647–651, 1994.CrossRefGoogle Scholar
  153. Rashid, H., Yokoi, S., Toriyama, K., Hinata, K.: Transgenic plant production mediated by Agrobacterium in indica rice. — Plant Cell Rep. 15: 727–730, 1996.CrossRefGoogle Scholar
  154. Reggiardo, M.I., Arana, J.L., Orsaria, L.M., Permingeat, H.R., Spitteler, M.A., Vallejos, R.H.: Transient transformation of maize tissues by microparticle bombardment. — Plant Sci. 75: 237–243, 1991.CrossRefGoogle Scholar
  155. Rhodes, C.A., Pierce, D.A., Mettler, I.J., Mascarenhas, D., Detmer, J.J.: Genetically transformed maize plants from protoplasts. — Science 240: 204–207, 1988.PubMedCrossRefGoogle Scholar
  156. Ritchie, S.W., Lyznik, L.A., McGee, J.D., Hodges, T.K.: The influence of differing promoter constructions on stable GUS expression on maize tissue. — Plant Physiol. 93(Suppl.): 46, 1990.Google Scholar
  157. Sahi, S.V., Chilton, M.D., Chiiton, W.S.: Corn metabolites affect growth and virulence of Agrobacterium tumefaciens. — Proc. nat. Acad. Sci. USA 87: 3879–3883, 1990.PubMedCrossRefGoogle Scholar
  158. Salas, M.C., Park, S.H., Srivatanakul, M., Smith, R.H.: Temperature influence on stable T-DNA integration in plant cells. — Plant Cell Rep. 20: 701–705, 2001.CrossRefGoogle Scholar
  159. Schafer, W., Gorz, A., Kahl, G.: T-DNA integration and expression in a monocot crop plant after induction of Agrobacterium. — Nature 327: 529–532, 1987.CrossRefGoogle Scholar
  160. Shah, J.M., Veluthambi, K.: DIANTHIN, a negative selection marker in tobacco, is non-toxic in transgenic rice and confers sheat blight resistance. — Biol. Plant. 54: 443–450, 2010.CrossRefGoogle Scholar
  161. Shahzad, A., Ahmad, N., Rather, M.A., Husain, M.K., Anis, M.: Improved shoot regeneration system through leaf derived callus and nodule culture of Sansevieria cylindrica. — Biol. Plant. 53: 745–749, 2009.CrossRefGoogle Scholar
  162. Shaw, C.H., Ashby, A.M., Brown, A., Royal, C., Loake, G.J., Shaw, C.H.: virA and G are the Ti-plasmid functions required for chemotaxis of Agrobacterium tumefaciens toward acetosyringone. — Mol. Microbiol. 2: 413–418, 1988.PubMedCrossRefGoogle Scholar
  163. Shen, W.H., Escudero, J., Schlappi, M., Ramos, C., Hohn, B., Koukolikova-Nicola, Z.: T-DNA transfer to maize cells: histochemical investigation of β-glucuronidase activity in maize tissues. — Proc. nat. Acad. Sci. USA 90: 1488–1492, 1993.PubMedCrossRefGoogle Scholar
  164. Sheng, J., Citovsky, V.: Agrobacterium-plant cell DNA transport: have virulence proteins, will travel. — Plant Cell 8: 1699–1710, 1996.PubMedCrossRefGoogle Scholar
  165. Shimamoto, K., Terada, R., Izawa, T., Fujimoto, H.: Fertile transgenic rice plants regenerated from transformed protoplasts. — Nature 338: 274–276, 1989.CrossRefGoogle Scholar
  166. Shimoda, N., Toyoda-Yamamoto, A., Nagamine, J., Usami, S., Katayama, M., Sakagami, Y., Machida, Y.: Control of expression of Agrobacterium vir genes by synergistic actions of phenolic signals molecules and monosaccharides. — Proc. nat. Acad. Sci. USA 87: 684–688, 1990.CrossRefGoogle Scholar
  167. Simpson, G.G., Filipowcz, W.: Splicing of pre-cursors to mRNA in higher plants: mechanism, regulation and subnuclear organization of the spliceosomal machinery. — Plant mol. Biol. 32: 1–41, 1996.PubMedCrossRefGoogle Scholar
  168. Sivamani, E., Shen, P., Opalka, N., Beachy, R.N., Fauquet, C.M.: Selection of large quantities of embryogenic calli from indica rice seeds for production of fertile transgenic plants using the biolistic method. — Plant Cell Rep. 15: 322–327, 1996.CrossRefGoogle Scholar
  169. Smith, R.H., Hood, E.E.: Review and interpretation: Agrobacterium tumefaciens transformation of monocotyledons. — Crop Sci. 35: 301–309, 1995.CrossRefGoogle Scholar
  170. Smith, R.L., Grando, M.F., Li, Y.Y., Seib, J.C., Shatters, R.G.: Transformation of bahiagrass (Paspalum notatum Flugge). — Plant Cell Rep. 20: 1017–1021, 2002.CrossRefGoogle Scholar
  171. Songstad, D.D., Halaka, F.G., DeBoer, D.L., Armstrong, C.L., Hinchee, M.A.W., Ford-Santino, C.G., Brown, S.M., Fromm, M.E., Horsch, R.B.: Transient expression of GUS and anthocyanin constructs in intact maize immature embryos following electroporation. — Plant Cell Tissue Organ Cult. 33: 195–201, 1993.CrossRefGoogle Scholar
  172. Spangenberg, G., Wang, Z.Y., Wu, X.L., Nagel, J., Iglesias, V.A., Potrykus, I.: Transgenic tall fescue (Festuca arundinacea) and red fescue (F. rubra) plants from microprojectile bombardment of embryogenic suspension cells. — J. Plant Physiol. 145: 693–701, 1995a.Google Scholar
  173. Spangenberg, G., Wang, Z.Y., Wu, X.L., Nagel, J., Potrykus, I.: Transgenic perennial ryegrass (Lolium perenne) plants from microprojectile bombardment of embryogenic suspension cells. — Plant Sci. 108: 209–217, 1995b.CrossRefGoogle Scholar
  174. Suzuki, S., Supaibulwatana, K., Mii, M., Nakano, M.: Production of transgenic plants of the Liliaceous ornamental plant Agapanthus praecox spp. orientalis (Leighton) via Agrobacterium-mediated transformation of embryogenic calli. — Plant Sci. 161: 89–97, 2001.CrossRefGoogle Scholar
  175. Svab, Z., Hajdukiewicz, P., Maliga, P.: Stable transformation of plastids in higher plants. — Proc. nat. Acad. Sci. USA 87: 8526–8530, 1990.PubMedCrossRefGoogle Scholar
  176. Taylor, M.G., Vasil, I.K.: Histology of, and physical factors affecting, transient GUS expression in pearl millet (Pennisetum americanum L. R.Br.) embryos following microprojectile bombardment. — Plant Cell Rep. 10: 120–125, 1991.CrossRefGoogle Scholar
  177. Tian, W., Rancé, I., Sivamani, E., Fauquet, C.M., Beachy, R.N.: Improvement of plant regeneration frequency in vitro in indica rice. — Acta genet. sin. 21: 215–221, 1994.Google Scholar
  178. Tingay, S., McElroy, D., Kalla, R., Fieg, S., Wang, M., Thornton, S., Brettell, R.: Agrobacterium tumefaciens mediated barley transformation. — Plant J. 11: 1369–1376, 1997.CrossRefGoogle Scholar
  179. Toriyama, K., Arimoto, Y., Uchimiya, H., Hinata, K.: Transgenic rice plants after direct gene transfer into protoplasts. — Biotechnology 6: 1072–1074, 1988.CrossRefGoogle Scholar
  180. Turk, S.C., Melchers, L.S., Den Dulk-Ras, H., Regensburg-Tuink, A.J., Hooykaas, P.J.: Environmental conditions differentially affect vir gene induction in different Agrobacterium strains: role of the VirA sensor protein. — Plant mol. Biol. 16: 1051–1059, 1991.PubMedCrossRefGoogle Scholar
  181. Upadhyaya, N.M., Surin, B., Ramm, K., Gaudron, J., Schunman, P.H.D., Taylor, W., Waterhouse, P.M., Wang, M.B.: Agrobacterium-mediated transformation of Australian rice cultivars Jarrah and Amaroo using modified promoters and selectable markers. — Aust. J. Plant Physiol. 27: 201–210, 2000.Google Scholar
  182. Urushibara, S., Tozawa, Y., Kawagishi-Kobayashi, M., Wakasa, K.: Efficient transformation of suspension-cultured rice cells mediated by Agrobacterium tumefaciens. — Breed. Sci. 5: 33–38, 2001.CrossRefGoogle Scholar
  183. Usami, S., Monikawa, S., Takebe, I., Machida, Y.: Absence in monocotyledonous plants of the diffusible plant factors inducing T-DNA circularization and vir gene expression in Agrobacterium. — Mol. gen. Genet. 209: 221–226, 1987.PubMedCrossRefGoogle Scholar
  184. Usami, S., Okamoto, S., Takebe, I., Machida, Y.: Factor inducing Agrobacterium tumefaciens vir gene expression is present in monocotyledonous plants. — Proc. nat. Acad. Sci. USA 85: 5536–5540, 1988.CrossRefGoogle Scholar
  185. Uze, M., Potrykus, I., Saute, C.: Factors influencing T-DNA transfer from Agrobacterium to pre-cultured immature wheat embryos (Triticum aestivum L.). — Cereal Res. Commun. 28: 17–23, 2000.Google Scholar
  186. Uze, M., Wunn, J., Punoti-Kaerlas, J., Potrykus, I., Sautter, C.: Plasmolysis of precultured immature embryos improves Agrobacterium mediated gene transfer to rice (Oryza sativa L.). — Plant Sci. 130: 87–95, 1997.CrossRefGoogle Scholar
  187. Vain, P., Harvey, A., Worland, B., Ross, S., Snape, J.W., Lonsdale, D.: The effect of additional virulence genes on transformation efficiency, transgene integration and expression in rice plants using the pGreen/pSoup dual binary vector system. — Transgenic Res. 13: 593–603, 2004.PubMedCrossRefGoogle Scholar
  188. Vain, P., McMullen, M.D., Finer, J.J.: Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. — Plant Cell Rep. 12: 84–88, 1993.CrossRefGoogle Scholar
  189. Valdez, M., Cabrera Ponce, J.L., Sudhakar, D., Herrera Estrella, L., Christou, P.: Transgenic Central America, West African and Asian elite rice varieties resulting from particle bombardment of foreign DNA into mature seed-derived explants utilizing three different bombardment devices. — Ann. Bot. 82: 795–801, 1998.CrossRefGoogle Scholar
  190. Vasil, V., Castillo, A.M., Fromm, M.E., Vasil, I.K.: Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. — Biotechnology 10: 667–674, 1992.CrossRefGoogle Scholar
  191. Vernade, D., Herrera-Estrella, A., Wang, K., Van Montagu, M.: Glycine betaine allows enhanced induction of the Agrobacterium tumefaciens vir genes by acetosyringone at low pH. — J. Bacteriol. 170: 5822–5829, 1988.PubMedGoogle Scholar
  192. Vijaychandra, K., Palanichelvam, K., Veluthambi, K.: Rice scutellum induces Agrobacterium tumefaciens vir genes and T-strand generation. — Plant mol. Biol. 29: 125–133, 1995.CrossRefGoogle Scholar
  193. Wang, G.L., Fang, H.J.: [Plant Genetic Engineering: Principle and Technique]. — Beijing Science Press, Beijing 1998. [In Chinese]Google Scholar
  194. Wang, M.B., Abbott, D.C., Upadhyaya, N.M., Jacobsen, J.V., Waterhouse, P.M.: Agrobacterium tumefaciens-mediated transformation of an elite Australian barley cultivar with virus resistance and reporter genes. — Aust. J. Plant Physiol. 28: 149–156, 2001.Google Scholar
  195. Wang, M.B., Upadhyaya, N.M., Brettell, R.I.S., Waterhouse, P.M.: Intron mediated improvement of a selectable marker gene for plant transformation using Agrobacterium tumefaciens. — J. Genet. Breed. 51: 325–334, 1997.Google Scholar
  196. Wei, L.I., Guangqin, G.U.O., Guochang, Z.: Agrobacteriummediated transformation: state of the art and future prospect. — Chin. sci. Bull. 45: 1537–1546, 2000.CrossRefGoogle Scholar
  197. Weir, B., Gu, X., Wang, M.B., Upadhyaya, N., Elliott, A.R., Brettell, R.I.S.: Agrobacterium tumefaciens mediated transformation of wheat using suspension cells as a model system and green fluorescent protein as a visual marker. — Aust. J. Plant Physiol. 28: 807–818, 2001.Google Scholar
  198. Woolston, C.J., Barker, R., Gunn, H., Boulton, M.I., Mullineaux, P.M.: Agroinfection and nucleotide sequence of cloned wheat dwarf virus DNA. — Plant mol. Biol. 11: 35–43, 1988.CrossRefGoogle Scholar
  199. Wright, M., Dawson, J., Dunder, E., Suttie, J., Reed, J., Kramer, C., Chang, Y., Novitzky, R., Wang, H., Artim Moore, L.: Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. — Plant Cell Rep. 20: 429–436, 2001.CrossRefGoogle Scholar
  200. Wu, H., Doherty, A., Jones, H.D.: Efficient and rapid Agrobacterium-mediated genetic transformation of durum wheat (Triticum turgidum L. var. durum) using additional virulence genes. — Transgenic Res. 17: 425–436, 2008.PubMedCrossRefGoogle Scholar
  201. Xing, S.C., Li, F., Guo, Q.F., Liu, D.R., Zhao, X.X., Wang, W.: The involvement of an expansin gene TaEXPB23 from wheat in regulating plant cell growth. — Biol. Plant. 53: 429–434, 2009.CrossRefGoogle Scholar
  202. Xu, X., Li, B.: Fertile transgenic Indica rice plants obtained by electroporation of the seed embryo cells. — Plant Cell Rep. 13: 237–242, 1994.CrossRefGoogle Scholar
  203. Xu, Y., Jia, J.F., Zheng, G.C.: Phenolic compounds can promote efficient transformation of plants by Agrobacterium. — Chin. sci. Bull. 34: 1902, 1989.Google Scholar
  204. Yaxin, G., Norton, T., Wang, Z.Y.: Transgenic zoysiagrass (Zoysia japonica) plants obtained by Agrobacteriummediated transformation. — Plant Cell Rep. 25: 792–798, 2006.CrossRefGoogle Scholar
  205. Ye, X., Al-Babili, S., Kloti, A., Zhang, J., Lucca, P., Beyer, P., Potrykus, I.: Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. — Science 287: 303–305, 2000.PubMedCrossRefGoogle Scholar
  206. Yin, Z., Wang, G.L.: Evidence of multiple complex patterns of T-DNA integration into the rice genome. — Theor. appl. Genet. 100: 461–470, 2000.CrossRefGoogle Scholar
  207. Zakharchenko, N.S., Kalyaeva, M.A., Bur’yanov, Ya.I.: Induction of agrobacterial T-DNA processing by exudates of monocotyledonous plants. — Russ. J. Plant Physiol. 46: 239–247, 1999.Google Scholar
  208. Zhang, H.M., Yang, H., Rech, E.L., Golds, T.J., Davis, A.S., Mulligan, B.J., Cocking, E.C., Davey, M.R.: Transgenic rice plants produced by electroporation-mediated plasmid uptake into protoplasts. — Plant Cell Rep. 7: 379–384, 1988.Google Scholar
  209. Zhang, J., Boone, L., Kocz, R., Zhang, C., Binns, A.N., Lynn, D.G.: At the maize/Agrobacterium interface: natural factors limiting host transformation. — Chem. Biol. 7: 611–621, 2000.PubMedCrossRefGoogle Scholar
  210. Zhang, S., Cho, M.J., Koprek, T., Yun, R., Bregitzer, P., Lemaux, P.G.: Genetic transformation of commercial cultivars of oat (Avena sativa L.) and barley (Hordeum vulgare L.) using in vitro shoot meristematic cultures derived from germinated seedlings. — Plant Cell Rep. 18: 959–966, 1999.CrossRefGoogle Scholar
  211. Zhang, S.: Efficient plant regeneration from indica (group 1) rice protoplasts of one advanced breeding line and three varieties. — Plant Cell Rep. 15: 68–71, 1995.CrossRefGoogle Scholar
  212. Zhang, S., Warkentin, D., Sun, B., Zhong, H., Sticklen, M.: Variation in the inheritance of expression among subclones for unselected (uidA) and selected (bar) transgenes in maize (Zea mays L.). — Theor. appl. Genet. 92: 752–761, 1996.CrossRefGoogle Scholar
  213. Zhang, W., Subbarao, S., Addae, P., Shen, A., Armstrong, C., Peschke, V., Gilbertson, L.: Cre/lox mediated gene excision in transgenic maize (Zea mays L.) plants. — Theor. appl. Genet. 107: 1157–1168, 2003.PubMedCrossRefGoogle Scholar
  214. Zhang, W., Wu, R.: Efficient regeneration of transgenic plants from rice protoplasts and correctly regulated expression of the foreign gene in the plants. — Theor. appl. Genet. 76: 835–840, 1988.CrossRefGoogle Scholar
  215. Zhao, Z.Y., Cai, T., Tagliani, L., Miller, M., Wang, N., Pang, H., Rudert, M., Schroeder, S., Hondred, D., Seltzer, J., Pierce, D.: Agrobacterium mediated sorghum transformation. — Plant mol. Biol. 44: 789–798, 2000.PubMedCrossRefGoogle Scholar
  216. Zhao, Z.Y., Gu, W., Cai, T., Tagliani, L., Hondred, D., Bond, D., Schroeder, S., Rudert, M., Pierce, D.: High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. — Mol. Breed. 8: 323–333, 2001.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Division of Biotechnology, Institute of Himalayan Bioresource TechnologyCouncil of Scientifi and Industrial ResearchPalampurIndia

Personalised recommendations