Biologia Plantarum

, Volume 54, Issue 4, pp 735–739 | Cite as

Effect of photoperiod during growth of Chenopodium rubrum mother plants on properties of offspring

  • A. Mitrović
  • J. Bogdanović
  • Z. Giba
  • L. Ćulafić
Brief Communication


Using in vitro culture, we determined the effect of photoperiod during growth of Chenopodium rubrum mother plants on vegetative and reproductive development of offspring. Photoperiod during flowering induction of mother plants (the first 6 d after the germination) has the key influence on seed germination and offspring growth, while offspring flowering and seed maturation is determined by photoperiod their mothers experienced during, and shortly after, flowering induction. The mechanism can be through changes in seed protein pattern which we found dependent on photoperiod experienced by mother plants.

Additional key words

flowering germination growth in vitro maternal effect seed seed protein 



Murashige and Skoog


polyacrylamide gel electrophoresis.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by a grant (No. 143043) from the Ministry of Science of the Republic of Serbia.


  1. Amzallag, G.H.: Plant evolution: toward an adaptive theory. — In: Lerner, H.R. (ed.): Plant Responses to Environmental Stress: from Phytohormones to Genome Reorganization. Pp. 171–247, Marcel Dekker, New York 1999.Google Scholar
  2. Bertero, H.D., King, R.W., Hall, A.J.: Photoperiod-sensitive development phases in quinoa (Chenopodium quinoa Willd.). — Field Crops Res. 60: 231–243, 1999.CrossRefGoogle Scholar
  3. Bhargava, A., Rana, T.S., Shukla, S., Ohri, D.: Seed protein elecrophoresis of some cultivated and wild species of Chenopodium. — Biol. Plant. 49: 505–511, 2005.CrossRefGoogle Scholar
  4. Bradford, M.M.: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principles of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.CrossRefPubMedGoogle Scholar
  5. Cook, R.E.: The photoindictive control of seed weight in Chenopodium rubrum L. — Amer. J. Bot. 62: 427–431, 1975.CrossRefGoogle Scholar
  6. Crawford, D.J.: Variation in the seed proteins of Chenopodium incanum. — Bull. Torrey Bot. Club 101: 72–77, 1974.CrossRefGoogle Scholar
  7. Etterson, J.R., Galloway, L.F.: The influence of light on paternal plants in Campanula americana (Campanulaceae): polen characterisics and offspring traits. — Amer. J. Bot. 89: 1899–1960, 2002.CrossRefGoogle Scholar
  8. Galloway, L.F.: Maternal effects provide phenotypic adaptation to local environmental conditions. — New Phytol. 166: 93–100, 2005.CrossRefPubMedGoogle Scholar
  9. Gutterman, Y.: Germinability of seeds as a function of the maternal environment. — Acta Hort. 83: 49–56, 1978.Google Scholar
  10. Gutterman, Y., Evenari, M.: The influence of day length on seed coat colour, an index of water permeability of the desert annual Ononis sicula Guss. — J. Ecol. 60: 713–719, 1972.CrossRefGoogle Scholar
  11. Han, T., Wu, C., Tong, Z., Mentreddy, R.S., Tan, K., Gai, J.: Postflowering photoperiod regulates vegetative growth and reproductive development of soybean. — Environ. exp. Bot. 55: 120–129, 2006.CrossRefGoogle Scholar
  12. Kern, A.J., Myers, T.M., Jasieniuk, M., Murray, B.G., Maxwell, B. D., Dyer, W.E.: Two recessive gene inheritance for triallate resistance in Avena fatua L. — J. Heredity 93: 48–50, 2002.CrossRefGoogle Scholar
  13. Koller, D.: Preconditioning of germination in lettuce at time of fruit ripening. — Amer. J. Bot. 49: 841–844, 1962.CrossRefGoogle Scholar
  14. Lacey, E.P., Smith, S., Case, A.L.: Parental effects on seed mass: seed coat but not embryo/endosperm effects. — Amer. J. Bot. 84: 1617–1620, 1997.CrossRefGoogle Scholar
  15. Lacey, E.P., Herr, D.: Parental effects in Plantago lanceolata L. III Measuring parental temperature effects in the field. Evolution. — Int. J. org. Evol. 54: 1207–1217, 2000.Google Scholar
  16. Laemmli, U.K.: Cleavage of structural proteins during assembly of head of bacteriophage T4. — Nature 227: 680–685, 1970.CrossRefPubMedGoogle Scholar
  17. Mazzaella, M.A., Arana, M.V., Stanelonim R.J., Perelman, S., Rodriguez, Batiller, M.J., Muschettim J., Cerdan, P.D., Chen, K., Sanchez, R.A., Zhu, T., Chory, J., Casal, J.: Phytochrom control of the Arabidopsis transcriptome anticipates seedling exposure to light. — Plant Cell 17: 2507–2516, 2005.CrossRefGoogle Scholar
  18. Miao, S.L., Bazzaz, F.A., Primack, R.B.: Persistance of maternal nutrient effects in Plantago major: the third generation. — Ecology 72: 1634–1642, 1991.CrossRefGoogle Scholar
  19. Mitrović, A., Giba, Z., Ćulafić, L.: The photoperiodic control of growth and development of Chenopodium rubrum L. plants in vitro. — Arch. biol. Sci. Belgrade 59: 203–208, 2007.CrossRefGoogle Scholar
  20. Mitrović, A., Živanović, B., Ćulafić, L.: Maternal effect on Chenopodium rubrum L. seeds: seed size, germination, growth and flowering in vitro. — Ekologiya 37: 53–58, 2002.Google Scholar
  21. Mitrović, A., Živanović, B., Ćulafić, L.: Effect of darkness on growth and flowering of Chenopodium rubrum and C. murale plants in vitro. — Biol. Plant. 46: 471–474, 2003.CrossRefGoogle Scholar
  22. Mitrović, A., Dučić, T., Lirić-Rajlić, I., Radotić, K., Živanović, B.: Changes in Chenopodium rubrum seeds aging. — Ann. New York Acad. Sci. 1048: 505–508, 2005.CrossRefGoogle Scholar
  23. Munir, J., Dorn, L.A.., Donohue, K., Schmitt, J.: The effect of maternal photoperiod on seasonal dormancy in Arabidopsis thaliana (Brasicaceae). — Amer. J. Bot. 88: 1240–1249, 2001.CrossRefGoogle Scholar
  24. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. — Physiol. Plant. 15: 473–497, 1962.CrossRefGoogle Scholar
  25. Opatrná, J., Ullmann, J., Pavlová, L., Krekule, J.: Changes in organ growth of Chenopodium rubrum due to suboptimal and multiple photoperiodic cycles with and without flowering effect. — Biol. Plant. 22: 454–464, 1980.CrossRefGoogle Scholar
  26. Prego, I., Maldonado, S., Otegui, M.: Seed structure and localization of reserves in Chenopodium quinoa. — Ann. Bot. 82: 481–488, 1998.CrossRefGoogle Scholar
  27. Roach, D.A., Wulff, R.D.: Maternal effects in plants. — Ann. Rev. Ecol. Syst. 18: 209–235, 1987.CrossRefGoogle Scholar
  28. Seidlová, F., Opatrná, J.: Change of growth correlation in the shoot meristem as the cause of dependance of flowering. — Z. Pflanzenphysiol. 89: 377–392, 1978.Google Scholar
  29. Steinger, T.B.: Maternal and direct effects of elevated CO2 on seed provisioning, germination and seedling growth in Bromus erectus. — Oecologia 123: 475–480, 2000.CrossRefGoogle Scholar
  30. Straton, D.A.: Competition prolongs expression of matenal effects in seedlings of Erigeron annuus (Asteraceae). — Amer. J. Bot. 76: 1646–1653, 1989.CrossRefGoogle Scholar
  31. Tsuchiya, T., Ishiguri, Y.: Role of the quality of light in the photoperiodic flowering response in four latitudinal ecotypes of Chenopodium rubrum L. — Plant Cell Physiol. 22: 525–532, 1981.Google Scholar
  32. Ullmann, J., Opatrná, J., Krekule, J., Pavlová, L.: The changes in the growth pattern of organs of Chenopodium rubrum photoperiodicaly induced to flowering. — Biol. Plant. 22: 374–383, 1980.CrossRefGoogle Scholar
  33. Živanović, B., Ćulafić, L., Filipović, A.: The effects of hormones and saccharides on growth and flowering of green and herbicides-treated Chenopodium rubrum L. plants. — Biol. Plant. 37: 257–264, 1995.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • A. Mitrović
    • 1
  • J. Bogdanović
    • 1
  • Z. Giba
    • 2
  • L. Ćulafić
    • 2
  1. 1.Institute for Multidisciplinary ResearchUniversity of BelgradeBelgradeSerbia
  2. 2.Institute of Botany, Faculty of ScienceUniversity of BelgradeBelgradeSerbia

Personalised recommendations