Biologia Plantarum

, Volume 54, Issue 4, pp 621–630

CDPK gene expression in salt tolerant rolB and rolC transformed cell cultures of Panax ginseng

  • K. V. Kiselev
  • O. V. Grishchenko
  • Y. N. Zhuravlev
Original Papers


CDPKs (calcium-depended protein kinases) are of great importance for the activation of defense reactions in plants. In this study, we aimed to find a connection between CDPK expression and increased salt tolerance in Panax ginseng. Treatment of P. ginseng cell cultures with W7 (CDPK protein inhibitor) showed that CDPK proteins were necessary for salt tolerance. Expression of PgCDPK1c, PgCDPK2c and PgCDPK4a was significantly increased in the cells treated with 60 mM NaCl compared to control cells, whereas expression of PgCDPK1b and PgCDPK3a was decreased. In the NaCl-treated cells, new CDPK transcripts also appeared (PgCDPK3c, PgCDPK4as). We also used rolC and rolB transformed cultures and the effects of the rol genes on CDPK expression were similar to the effects of salt stress: they caused a significant increase in the expression of PgCDPK1c, PgCDPK2c, and PgCDPK4a and decreased expression of PgCDPK3a, in addition to the appearance of the “short” CDPK transcripts.

Additional key words

Agrobacterium rhizogenes calcium-dependent protein kinases NaCl 



calcium-dependent protein kinase


mitogen-activated protein kinase


salt overly sensitive calcium binding proteins


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asano, T., Tanaka, N., Yang, G., Hayashi, N., Komatsu, S.: Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: comprehensive analysis of the CDPKs gene family in rice. — Plant Cell Physiol. 46: 356–366, 2005.CrossRefPubMedGoogle Scholar
  2. Boudeau, J., Miranda-Saavedra, D., Barton, G.J., Alessi, D.R.: Emerging roles of pseudokinases. — Trends Cell Biol. 16: 443–452, 2006.CrossRefPubMedGoogle Scholar
  3. Bulgakov, V.P., Veselova, M.V., Tchernoded, G.K., Kiselev, K.V., Fedoreyev, S.A., Zhuravlev, Y.N.: Inhibitory effect of the Agrobacterium rhizogenes rolC gene on rabdosiin and rosmarinic acid production in Eritrichium sericeum and Lithospermum erythrorhizon transformed cell cultures. — Planta 221: 471–478, 2005.CrossRefPubMedGoogle Scholar
  4. Bulgakov, V.P., Kiselev, K.V., Yakovlev, K.V., Zhuravlev, Y.N., Gontcharov, A.A., Odintsova, N.A.: Agrobacterium-mediated transformation of sea urchin embryos. — Biotechnol. J. 1: 454–461, 2006.CrossRefPubMedGoogle Scholar
  5. Cheng, S.H., Willmann, M.R., Chen, H.C., Sheen, J.: Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. — Plant Physiol. 129: 469–485, 2002.CrossRefPubMedGoogle Scholar
  6. Dubrovina, A.S., Kiselev, K.V., Veselova, M.V., Isaeva, G.A., Fedoreyev, S.A., Zhuravlev, Y.N.: Enhanced resveratrol accumulation in rolB transgenic cultures of Vitis amurensis correlates with unusual changes in CDPK gene expression. — J. Plant Physiol. 166: 1194–1206, 2009.CrossRefPubMedGoogle Scholar
  7. Filippini, F., Rossi, R., Marin, O., Trovato, M., Costantino, P., Downey, P.M., Lo Schiavo, F., Terzi, M.: A plant oncogene as a phosphatase. — Nature 379: 499–500, 1996.CrossRefPubMedGoogle Scholar
  8. Giulietti, A., Overbergh, L., Valckx, D., Decallonne, B., Bouillon, R., Mathieu, C.: An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. — Methods 25: 386–401, 2001.CrossRefPubMedGoogle Scholar
  9. Hwang, I., Sze, H., Harper, J.F.: A calcium-dependent protein kinase can inhibit a calmodulin-stimulated Ca2+ pump (ACA2) located in the endoplasmic reticulum of Arabidopsis. — Proc. nat. Acad. Sci. USA 97: 6224–6229, 2000.CrossRefPubMedGoogle Scholar
  10. Ji, W., Li, Y., Li, J., Dai, C.H., Wang, X., Bai, X., Cai, H., Yang, L., Zhu Y.M.: Generation and analysis of expressed sequence tags from NaCl-treated Glycine soja. — BMC Plant Biol. 6: 1–7, 2006.CrossRefGoogle Scholar
  11. Kiselev, K.V., Dubrovina, A.S., Bulgakov, V.P.: Phenylalanine ammonia-lyase and stilbene synthase gene expression in rolB transgenic cell cultures of Vitis amurensis. — Appl. Microbiol. Biotechnol. 82: 647–655, 2009.CrossRefPubMedGoogle Scholar
  12. Kiselev, K.V., Dubrovina, A.S., Veselova, M.V., Bulgakov, V.P., Fedoreyev, S.A., Zhuravlev, Y.N.: The rolB gene-induced overproduction of resveratrol in Vitis amurensis transformed cells. — J. Biotechnol. 128: 681–692, 2007.CrossRefPubMedGoogle Scholar
  13. Kiselev, K.V., Gorpenchenko, T.Y., Tchernoded, G.K., Dubrovina, A.S., Grishchenko, O.V., Bulgakov, V.P., Zhuravlev, Y.N.: Calcium-dependent mechanism of somatic embryogenesis in Panax ginseng cell cultures expressing the rolC oncogene. — Mol. Biol. 42: 243–252, 2008.CrossRefGoogle Scholar
  14. Kiselev, K.V., Grishchenko, O.V.: Enhanced salt tolerance in cells of Panax ginseng, transformed with rolC and rolB oncogenes from Agrobacterium rhizogenes. — In: Nosov A.M. (ed): The Proceedings of the IX International Conference “The Biology of Plant Cell in Vitro and Biotechnology”. P. 175. FBK-Press, Zvenigorod 2008.Google Scholar
  15. Kiselev, K.V., Kusaykin, M.I., Dubrovina, A.S., Bezverbny, D.A., Zvyagintseva, T.N., Bulgakov, V.P.: The rolC gene induces expression of a pathogenesis-related beta-1,3- glucanase in transformed ginseng cells. — Phytochemistry 67: 2225–2231, 2006.CrossRefPubMedGoogle Scholar
  16. Kurihara, D., Kawabe, A., Matsunaga, S., Nakagawa, K., Fujimoto, S., Uchiyama, S., Fukui, K.: Characterization of a splicing variant of plant Aurora kinase. — Plant Cell Physiol. 48: 369–374, 2007.CrossRefPubMedGoogle Scholar
  17. Lee, S.S., Cho, H.S., Yoon, G.M., Ahn, J.W., Kim, H.H., Pai, H.S.: Interaction of NtCDPK1 calcium-dependent protein kinase with NtRpn3 regulatory subunit of the 26S proteasome in Nicotiana tabacum. — Plant J. 33: 825–884, 2003.CrossRefPubMedGoogle Scholar
  18. López-Carrión, A.I., Castellano, R., Rosales, M.A., Ruiz, J.M., Romero, L.: Role of nitric oxide under saline stress: implications on proline metabolism. — Biol. Plant. 52: 587–591, 2008.CrossRefGoogle Scholar
  19. Martin, M.L., Busconi, L.: A rice membrane-bound calciumdependent protein kinase is activated in response to low temperature. — Plant Physiol. 125: 1442–1449, 2001.CrossRefPubMedGoogle Scholar
  20. Melgar, J.C., Syvertsen, J.P., Martínez, V. García-Sánchez, F.: Leaf gas exchange, water relations, nutrient content and growth in citrus and olive seedlings under salinity. — Biol. Plant. 52: 385–390, 2008.CrossRefGoogle Scholar
  21. Moriuchi, H., Okamoto, C., Nishihama, R., Yamashita, I., Machida, Y., Tanaka, N.: Nuclear localization and interaction of RolB with plant 14-3-3 proteins correlates with induction of adventitious roots by the oncogene rolB. — Plant J. 38: 260–275, 2004.CrossRefPubMedGoogle Scholar
  22. Nishiyama, R., Mizuno, H., Okada, S., Yamaguchi, T., Takenaka, M., Fukuzawa, H., Ohyama, K.: Two mRNA species encoding calcium-dependent protein kinases are differentially expressed in sexual organs of Marchantia polymorpha through alternative splicing. — Plant Cell Physiol. 40: 205–212, 1999.PubMedGoogle Scholar
  23. Palazón, J., Cusidó, R.M., Gonzalo, J., Bonfill, M., Morales, S., Piñol, M.T.: Relation between the amount the rolC gene product and indole alkaloid accumulation in Catharantus roseus transformed root cultures. — J. Plant Physiol. 153: 712–718, 1998.Google Scholar
  24. Park, S.H., Choi, J., Kang, J.I., Choi, S.Y., Hwang, S.B., Kim, J.P., Ahn, B.Y.: Attenuated expression of interferon-induced protein kinase PKR in a simian cell devoid of type I interferons. — Mol. Cells 21: 21–28, 2006.PubMedGoogle Scholar
  25. Radyukina, N.L., Ivanov, Y.V., Kartashov, A.V., Shevyakova, N.I., Rakitin, V.Y., Khryanin, V.N., Kuznetsov, V.V.: Inducible and constitutive mechanisms of salt stress resistance in Geum urbanum L. — Russ. J. Plant Physiol. 54: 612–618, 2007.CrossRefGoogle Scholar
  26. Ray, S., Agarwal, P., Arora, R., Kapoor, S., Tyagi, A.K.: Expression analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice (Oryza sativa L. ssp. indica). — Mol. Genet. Genomics 278: 493–505, 2007.CrossRefPubMedGoogle Scholar
  27. Saijo, Y., Hata, S., Kyozuka, J., Shimamoto, K., Izui, K.: Overexpression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. — Plant J. 23: 319–327, 2000.CrossRefPubMedGoogle Scholar
  28. Spena, A., Schmulling, T., Koncz, C., Schell, J.S.: Independent and synergistic activity of rolA, B and C loci in stimulating abnormal growth in plants. — EMBO J. 6: 3891–3899, 1987.PubMedGoogle Scholar
  29. Su, G.X., Bai, X.: Contribution of putrescine degradation to proline accumulation in soybean leaves under salinity. — Biol. Plant. 52: 796–799, 2008.CrossRefGoogle Scholar
  30. Tähtiharju, S., Sangwan, V., Monroy, A.F., Dhindsa, R.S., Borg, M.: The induction of kin genes in cold-acclimating Arabidopsis thaliana. Evidence of a role for calcium. — Planta 203: 442–447, 1997.CrossRefPubMedGoogle Scholar
  31. Tiwari, R.K., Trivedi, M., Guang, Z.C., Guo, G.Q., Zheng, G.C.: Agrobacterium rhizogenes mediated transformation of Scutellaria baicalensis and production of flavonoids in hairy roots. — Biol. Plant. 52: 26–35, 2008.CrossRefGoogle Scholar
  32. Tsai, T.M., Chen, Y.R., Kao, T.W., Tsay, W.S., Wu, C.P., Huang, D.D., Chen, W.H., Chang, C.C., Huang, H.J.: PaCDPK1, a gene encoding calcium-dependent protein kinase from orchid, Phalaenopsis amabilis, is induced by cold, wounding, and pathogen challenge. — Plant Cell Rep. 26: 899–1908, 2007.CrossRefGoogle Scholar
  33. Urao, T., Katagiri, T., Mizoguchi, T., Yamaguchi-Shinozaki, K., Hayashida, N., Shinozaki, K.: Two genes that encode Ca2+-dependent protein kinases are induced by drought and high salt stresses in Arabidopsis thaliana. — Mol. Gen. Genet. 224: 331–340, 1994.Google Scholar
  34. Veena, V., Taylor., C.G.: Agrobacterium rhizogenes: recent developments and promising applications. — In Vitro cell. dev. Plant Biol. 43: 383–403, 2007.CrossRefGoogle Scholar
  35. Xiong, L., Schumaker, K.S., Zhu, J.K.: Cell signaling during cold, drought, and salt stress. — Plant Cell 14: 165–183, 2002.CrossRefGoogle Scholar
  36. Xiong, L.Z., Yang, Y.N.: Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. — Plant Cell 15: 745–759, 2003.CrossRefPubMedGoogle Scholar
  37. Yu, X.C., Zhu, S.Y., Gao, G.F., Wang, X.J., Zhao, R., Zou, K.Q., Wang, X.F., Zhang, X.Y., Wu, F.Q., Peng, C.C., Zhang, D.P.: Expression of a grape calcium-dependent protein kinase ACPK1 in Arabidopsis thaliana promotes plant growth and confers abscisic acid-hypersensitivity in germination, postgermination growth, and stomatal movement. — Plant mol. Biol. 64: 531–538, 2007.CrossRefPubMedGoogle Scholar
  38. Yuan, X., Deng, K.Q., Zhao, X.Y., Wu, X.J., Qin, Y.Z., Tang, D.Y., Liu, X.M.: A calcium-dependent protein kinase is involved in plant hormone signal transduction in Arabidopsis. — J. Plant Physiol. mol. Biol. 33: 227–234, 2007.Google Scholar
  39. Yue, P.Y., Mak, N.K., Cheng, Y.K., Leung, K.W., Ng, T.B., Fan, D.T., Yeung, H.W., Wong, R.N.: Pharmacogenomics and the Yin/Yang actions of ginseng: anti-tumor, angiomodulating and steroid-like activities of ginsenosides. — Chin. Med. 6: 1–21, 2007.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • K. V. Kiselev
    • 1
  • O. V. Grishchenko
    • 1
  • Y. N. Zhuravlev
    • 1
  1. 1.Institute of Biology and Soil ScienceFar East Branch of Russian Academy of SciencesVladivostokRussia

Personalised recommendations