Biologia Plantarum

, Volume 54, Issue 3, pp 488–494 | Cite as

Effect of temperature on water transport through aquaporins

Original Papers


The mean effective water self-diffusion coefficient in maize root segments under the effect of aquaporin blocker (mercuric chloride, 0.1 mM) was measured using the spin-echo NMR method with pulsed magnetic field gradient within the temperature range from 10 to 35 °C. HgCl2 caused the reduction in water diffusion by 30 % as compared to the control samples. Temperature dependences of water self-diffusion coefficients showed two linear regions with different values of Q10 and activation energy, Ea. As the temperature reduced from 20 to 10 °C, Ea values calculated from the Arrhenius plots were close to those of bulk water (20 ± 3 kJ mol−1) and slightly changed for the sample pretreated HgCl2. Within the temperature range from 25 to 35 °C the slope of temperature dependences became steeper and Ea values were 31 ± 3 kJ mol−1 for the control and 40 ± 4 kJ mol−1 for the treated sample. In the vicinity of 20 °C, the temperature dependence of water diffusion via the mercury-sensitive water channels showed extreme value. In the region, the specific area of the mercury-sensitive aquaporins was 0.004 % of the total cell surface area. The data indicate that water transfer via aquaporins is sensitive to temperature, and the contributions of the transmembrane pathways (aquaporins, lipid bilayer) differ in different temperature ranges.

Additional key words

activation energy nuclear magnetic resonance permeability transmembrane transfer Zea mays 



effective diffusion coefficient of water


diffusional decay


coefficient of diffusion water permeability of membranes


relative echo amplitude


diffusion time


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was supported by grant No. 08-04-01258 from Russian Foundation for Basic Research.


  1. Alleva, K., Niemietz, C.M., Sutka, M., Maurel, C., Parisi, M., Tyerman, S.D., Amodeo, G.: Plasma membrane of Beta vulgaris storage root shows high water channel activity regulated by cytoplasmic pH and a dual range of calcium concentrations. — J. exp. Bot. 57: 609–621, 2006.CrossRefPubMedGoogle Scholar
  2. Anisimov, A.V., Sorokina, N.Yu., Dautova, N.R.: Water diffusion in biological porous systems: a NMR approach. — Magnetic Resonance Imaging 16: 565–568, 1998.CrossRefPubMedGoogle Scholar
  3. Anisimov, A.V., Ionenko, I.F., Romanov, A.V.: Spin-echo NMR study of the translational water diffusion selectively along the apoplast and the cytoplasmic and vacuolar symplasts of plants. — Biophysics 49: 816–821, 2004.Google Scholar
  4. Aroca, R., Amodeo, G., Fernandez-Illescas, S., Herman, E.M., Chaumont, F., Chrispeels, M.J.: The role of aquaporins and membrane damage in chilling and hydrogen peroxide induced changes in the hydraulic conductance of maize roots. — Plant Physiol. 137: 341–353, 2005.CrossRefPubMedGoogle Scholar
  5. Azad, A.K., Sawa, Y., Ishikawa, T., Shibata, H.: Phosphorylation of plasma membrane aquaporin regulates temperature-dependent opening of tulip petals. — Plant Cell Physiol. 45: 608–617, 2004.CrossRefPubMedGoogle Scholar
  6. Barrieu, F., Chaumont, F., Chrispeels, M.J.: High expression of the tonoplast aquaporin ZmTIP1 in epidermal and conducting tissues of maize. — Plant Physiol. 117: 1153–1163, 1998.CrossRefPubMedGoogle Scholar
  7. Chaumont, F., Barrieu, F., Wojcik, E., Chrispeels, M.J., Jung, R.: Aquaporins constitute a large and highly divergent protein family in maize. — Plant Physiol. 125: 1206–1215, 2001.CrossRefPubMedGoogle Scholar
  8. Chrispeels, M.J., Agre, P.: Aquaporins: water channel proteins of plant and animal cells. — Trends Biochem. Sci. 19: 421–425, 1994.CrossRefPubMedGoogle Scholar
  9. Crick, F.: Diffusion in embryogenesis. — Nature 225: 420–422, 1970.CrossRefPubMedGoogle Scholar
  10. Ermawati, N., Liang, Y.S., Cha, J.-Y., Shin, D., Jung, M.H., Lee, J.J., Han, C.-D., Lee, K.H., Son, D.: A new TIP homolog, ShTIP, from Salicornia shows a different involvement in salt stress compared to that of TIP from Arabidopsis. — Biol. Plant. 53: 271–277, 2009.CrossRefGoogle Scholar
  11. Finkelstein, A.: Water Movement through Lipid Bilayers, Pores and Plasma Membranes. Theory and Reality. Vol. 4. — Wiley-Interscience Publishers, New York 1987.Google Scholar
  12. Gerbeau, P., Amodeo, G., Henzler, T., Santoni, V., Ripoche, P., Maurel, C.: The water permeability of Arabidopsis plasma membrane is regulated by divalent cations and pH. — Plant J. 30: 71–81, 2002.CrossRefPubMedGoogle Scholar
  13. Hachez, C., Moshelion, M., Zelazny, E., Cavez, D., Chaumont, F.: Localization and quantification of plasma membrane aquaporin expression in maize primary root: a clue to understanding their role as cellular plumbers. — Plant mol. Biol. 62: 305–323, 2006.CrossRefPubMedGoogle Scholar
  14. Henzler, T., Steudle, E.: Reversible closing of water channels in Chara internodes provides evidence for a composite transport model of the plasma membrane. — J. exp. Bot. 46: 199–209, 1995.CrossRefGoogle Scholar
  15. Hertel, A., Steudle, E.: The function of water channels in Chara: the temperature dependence of water and solute flows provides evidence for composite membrane transport and for a slippage of small organic solutes across water channels. — Planta 202: 324–335, 1997.CrossRefGoogle Scholar
  16. Holz, R, Finkelstein, A.: The water and nonelectrolyte permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. — J. gen. Physiol. 56: 125–145, 1970.CrossRefPubMedGoogle Scholar
  17. Ionenko, I.F., Anisimov, A.V., Karimova, F.G.: Water transport in maize roots under the influence of mercuric chloride and water stress: a role of water channels. — Biol. Plant. 50: 74–80, 2006.CrossRefGoogle Scholar
  18. Ionenko, I.F., Anisimov, A.V.: Radial diffusion transport of water in various zones of maize root and its sensitivity to mercury chloride. — Rus. J. Plant Physiol. 54: 224–229, 2007.CrossRefGoogle Scholar
  19. Javot, H., Maurel, C.: The role of aquaporins in root water uptake. — Ann. Bot. 90: 301–313, 2002.CrossRefPubMedGoogle Scholar
  20. Johansson, I., Karlsson, M., Shukla, V.K., Chrispeels, M.J., Larsson, C., Kjellbom, P.: Water transport activity of the plasma membrane aquaporins PM28A is regulated by phosphorylation. — Plant Cell 10: 451–459, 1998.CrossRefPubMedGoogle Scholar
  21. Krishnan, P., Joshi, D.K., Maheswari, M., Nagarajan, S., Moharir, A.V.: Characterization of soybean and wheat seeds by nuclear magnetic resonance spectroscopy. — Biol. Plant. 48: 117–120, 2004.CrossRefGoogle Scholar
  22. Lee, S.H., Chung, G.C., Steudle, E.: Gating of aquaporins by low temperature in roots of chilling-sensitive cucumber and chilling-tolerant figleaf gourd. — J. exp. Bot. 56: 985–995, 2005a.CrossRefPubMedGoogle Scholar
  23. Lee, S.H., Chung, G.C., Steudle, E.: Low temperature and mechanical stresses differently gate aquaporins of root cortical cells of chilling-sensitive cucumber and -resistant figleaf gourd. — Plant Cell Environ. 28: 1191–1202, 2005b.CrossRefGoogle Scholar
  24. Maggio, A., Joly, R.J.: Effects of mercuric chloride on the hydraulic conductivity of tomato root systems. — Plant Physiol. 109: 331–335, 1995.PubMedGoogle Scholar
  25. Maurel, C., Chrispeels, M.J.: Aquaporins. A molecular entry into plant water relations. — Plant Physiol. 125: 135–138, 2001.CrossRefPubMedGoogle Scholar
  26. Maurel, C., Kado, R.T., Guern, J., Chrispeels, M.J.: Phosphorylation regulates the water channel activity of the seed specific aquaporin α-TIP. — EMBO J. 14: 3028–3035, 1995.PubMedGoogle Scholar
  27. Maurel, C., Tacnet, F., Güclü, J., Guern, J., Ripoche, P.: Purified vesicles of tobacco cell vacuolar and plasma membranes exhibit dramatically different water permeability and water channel activity. — Proc. nat. Acad. Sci. USA 94: 7103–7108, 1997.CrossRefPubMedGoogle Scholar
  28. Melkonian, J., Yu, L.X., Setter, T.L. Chilling responses of maize (Zea mays L.) seedlings: root hydraulic conductance, abscisic acid, and stomatal conductance. — J. exp. Bot. 55: 1751–1760, 2004.CrossRefPubMedGoogle Scholar
  29. Niemietz, C.M., Tyerman S.D.: Characterization of water channels in wheat root membrane vesicles. — Plant Physiol. 115: 561–567, 1997.PubMedGoogle Scholar
  30. Quigley, F., Rosenberg, J.M., Shachar-Hill, Y., Bohnert, H.J.: From genome to function: the Arabidopsis aquaporins. — Genome Biol. 3: 1–17, 2001.CrossRefGoogle Scholar
  31. Steudle, E.: Water transport across plant tissue: role of water channels. — Biol. Cell 89: 259–273, 1997.CrossRefGoogle Scholar
  32. Steudle, E.: Water uptake by roots: effects of water deficit. — J. exp. Bot. 51: 1531–1542, 2000.CrossRefPubMedGoogle Scholar
  33. Sutka, M., Alleva, K., Parisi, M. Amodeo, G.: Tonoplast vesicles of Beta vulgaris storage root show functional aquaporins regulated by protons. — Biol. Cell 97: 837–846, 2005.CrossRefPubMedGoogle Scholar
  34. Schütz, K., Tyerman, S.D.: Water channels in Chara coralline. — J. exp. Bot. 48: 1511–1518, 1997.Google Scholar
  35. Tanner, J.E.: Use of the stimulated echo in NMR diffusion studies. — J. chem. Phys. 52: 2523–2526, 1970.CrossRefGoogle Scholar
  36. Tazawa, M., Ohkuma, E., Shibasaka, M., Nakashima, S.: Mercurial-sensitive water transport in barley roots. — J. Plant Res. 110: 435–442, 1997.CrossRefGoogle Scholar
  37. Tournaire-Roux, C., Sutka, M., Javot, H., Gout, E., Gerbeau, P., Luu, D.-T., Bligny, R., Maurel, C.: Cytosolic pH regulated root water transport during anoxic stress through gating of aquaporins. — Nature 425: 393–397, 2003.CrossRefPubMedGoogle Scholar
  38. Tyerman, S.D., Bohnert, H.J., Maurel, S., Steudle, E., Smith, J.A.C.: Plant aquaporins: their molecular biology, biophysics and significance for plant water relations. — J. exp. Bot. 50: 1055–1071, 1999.CrossRefGoogle Scholar
  39. Tyerman, S.D., Niemietz, C.M., Bramley, H.: Plant aquaporins: multifunctional water and solute channels with expanding roles. — Plant Cell Environ. 25: 173–194, 2002.CrossRefPubMedGoogle Scholar
  40. Van der Weerd, L., Claessens, M.M.A.E., Rutink, T., Vergeldt, F.J., Schaafsma, T.J., Van As, H.: Quantitative NMR microscopy of osmotic stress responses in maize and pearl millet. — J. exp. Bot. 52: 2333–2343, 2001.CrossRefPubMedGoogle Scholar
  41. Van Dusschoten, D., De Jager, P.A., Van As, H.: Extracting diffusion constants from echo-time-dependent PFG NMR data using relaxation-time information. — J. Magnetic. Resonance 116: 22–28, 1995.Google Scholar
  42. Wan, X., Steudle, E., Hartung, W.: Gating of water channels (aquaporins) in cortical cells of young corn roots by mechanical stimuli (pressure pulses): effects of ABA and of HgCl2. — J. exp. Bot. 55: 411–422, 2004.CrossRefPubMedGoogle Scholar
  43. Wan, X., Zwiazek, J.J.: Mercuric chloride effects on root water transport in aspen seedlings. — Plant Physiol. 121: 939–946, 1999.CrossRefPubMedGoogle Scholar
  44. Wayne, R. Tazawa, M.: Nature of water channels in the internodal cells of Nitellopsis. — J. Membr. Biol. 116: 31–39, 1990.CrossRefPubMedGoogle Scholar
  45. Willmer, C.M., Padmasree, K., Raghavendra, A.S.: A novel method of measuring volume changes of mesophyll cell protoplasts and the effect of mercuric chloride on their osmotically-induced swelling. — J. exp. Bot. 50: 401–406, 1999.CrossRefGoogle Scholar
  46. Ye, Q., Wiera, B., Steudle, E.: A cohesion/tension mechanism explains the gating of water channels (aquaporins) in Chara internodes by high concentration. — J. exp. Bot. 55: 449–461, 2004.CrossRefPubMedGoogle Scholar
  47. Zhang, W.-H., Tyerman, S.D.: Inhibition of water channels by HgCl2 in intact wheat root cells. — Plant Physiol. 120: 849–858, 1999.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • I. F. Ionenko
    • 1
  • A. V. Anisimov
    • 1
  • N. R. Dautova
    • 1
  1. 1.Institute of Biochemistry and BiophysicsKazan Scientific Center of Russian Academy of SciencesKazanRussia

Personalised recommendations