Biologia Plantarum

, Volume 54, Issue 2, pp 201–212

Transcription factors in plants and ABA dependent and independent abiotic stress signalling

Review

Abstract

Plants face variable environmental stresses that negatively affect plant growth and productivity. The multiplicity of responses is an important aspect of the complexity of stress signalling. Abscisic acid (ABA) is a broad-spectrum phytohormone involved not only in regulating stomatal opening, growth and development but also in coordinating various stress signal transduction pathways in plants during abiotic stresses. The both ABA-dependent and ABA-independent signal transduction pathways from stress signal perception to gene expression involve different transcription factors such as DREB, MYC/MYB, AREB/ABF, NAM, ATAF1,2, CUC and their corresponding cis-acting elements DRE, MYCRS/MYBRS, ABRE, NACRS. Genetic analysis of ABA mutants has given insight that ABA-dependent and ABA-independent pathways for osmotic stress and cold stress interact and converge. This review focuses on ABA-dependent and ABA-independent transcriptional components and cascades, their specificity and crosstalk in stress gene regulation.

Additional key words

cis-element cross talk downstream genes gene regulation overexpression 

Abbreviations

ABA

abscisic acid

ABF

ABRE binding factor

AP2

apetala 2

AREBs

ABA responsive element binding protein

ATAF1,2

Arabidopsis transcription factor 1 or 2 like family

CUC

cup-shaped cotyledon

DREB2

drought responsive element binding protein 2

ERF

ethylene responsive factor

hos5

high expression of osmotic responsive genes

NAM

no apical meristem

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, H., Yamaguchi-Shinozaki, K., Urao, T., Iwasaki, T., Hosokawa, D., Shinozaki K.: Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. — Plant Cell 9: 1859–1868, 1997.PubMedCrossRefGoogle Scholar
  2. Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. — Plant Cell 15: 63–78, 2003.PubMedCrossRefGoogle Scholar
  3. Agarwal, M., Hao, Y., Kapoor, A., Dong, C.H., Fuji, H., Zheng, X., Zhu, J.K.: A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. — J. biol. Chem. 281: 37636–37645, 2006b.PubMedCrossRefGoogle Scholar
  4. Agarwal, P., Agarwal, P.K., Nair, S., Sopory, S.K., Reddy, M.K.: Stress inducible DREB2A transcription factor from Pennisetum glaucum is a phosphoprotein and its phosphorylation negatively regulates its DNA binding activity. — Mol. gen. Genet. 277: 189–198, 2007.Google Scholar
  5. Agarwal, P.K., Agarwal, P., Reddy, M.K., Sopory, S.K.: Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. — Plant Cell Rep. 86: 1263–1274, 2006a.CrossRefGoogle Scholar
  6. Aguan, K., Sugawara, K., Suzuki, N., Kusano, T.: Low temperature- dependent expression of a rice gene encoding a protein with a leucine-zipper motif. — Mol. gen. Genet. 240: 1–8, 1993.Google Scholar
  7. Aida, M., Ishida, T., Fukaki, H., Fujisawa, H., Tasaka, M.: Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. — Plant Cell 9:841–857, 1997.PubMedCrossRefGoogle Scholar
  8. Albrecht, V., Weinl, S., Blazevic, D., D’Angelo, C., Batistic, O., Kolukisaoglu, U., Bock, R., Schulz, B., Harter, K., Kudla, J.: The calcium sensor CBL1 integrates plant responses to abiotic stresses. — Plant J. 36: 457–470, 2003.PubMedCrossRefGoogle Scholar
  9. Brocard, I., Lynch, T., Finkelstein, R.: Regulation and role of the Arabidopsis ABA-insensitive (ABI) 5 gene in ABA, sugar and stress response. — Plant Physiol. 129: 1533–1543, 2002.PubMedCrossRefGoogle Scholar
  10. Catala, R., Santos, E., Alonso, J.M., Ecker, J.R., Martinez-Zapater, J.M., Salinas, J.: Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. — Plant Cell 15: 2940–2951, 2003.PubMedCrossRefGoogle Scholar
  11. Century, K., Reuber, T.L., Ratcliffe, O.J.: Regulating the regulators: the future prospects for transcription-factor-based agricultural biotechnology products. — Plant Physiol. 147: 20–29, 2008.Google Scholar
  12. Chen, H.H., Li, P.H., Brenner, M.L.: Involvement of abscisic acid in potato cold acclimation. — Plant Physiol. 71: 362–65, 1983.PubMedCrossRefGoogle Scholar
  13. Chen, J.Q., Meng, X.P., Zhang, Y., Xia, M., Wang, X.P.: Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. — Biotechnol. Lett. 30: 2191–2198, 2008.PubMedCrossRefGoogle Scholar
  14. Chen, M., Wang, Q.Y., Cheng, X.G., Xu, Z.S., Li, L.C., Ye, X.G., Xia, L.Q., Ma, Y.Z.: GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. — Biochem. biophys. Res. Commun. 353: 299–305, 2007.PubMedCrossRefGoogle Scholar
  15. Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B.H., Hong, X., Agarwal, M., Zhu, J.K.: ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. — Genes Dev. 17: 1043–1054, 2003.PubMedCrossRefGoogle Scholar
  16. Choi, D.W., Rodriguez, E.M., Close, T.J.: Barley Cbf3 gene identification, expression pattern, and map location. — Plant Physiol. 129: 1781–1787, 2002.PubMedCrossRefGoogle Scholar
  17. Choi, H., Hong, J., Ha, J., Kang, J., Kim, S.Y.: ABFs, a family of ABA responsive element binding factors. — J. biol. Chem. 21: 1723–1730, 2000.CrossRefGoogle Scholar
  18. Dai, X., Xu, Y., Ma, Q., Xu, W., Wang, T., Xue, Y., Chong, K.: Overexpression of an R1R2R3 MYB gene OsMYB3R-2, increases tolerance to freezing, drought, salt stress in transgenic Arabidopsis. — Plant Physiol. 143: 1739–1751, 2007.PubMedCrossRefGoogle Scholar
  19. Dinneny, J.R., Long, T.A., Wang, J.Y., Jung, J.W., Mace, D., Pointer, S., Barron, C., Brady, S.M., Schiefelbein, J., Benfey, P.N.: Cell identity mediates the response of Arabidopsis roots to abiotic stress. — Science 320: 942–945, 2008.PubMedCrossRefGoogle Scholar
  20. Dubouzet, J.G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E.G., Miura, S., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. — Plant J. 33: 751–763, 2003.PubMedCrossRefGoogle Scholar
  21. Egawa, C., Kobayashi, F., Ishibashi, M., Nakamura, T., Nakamura, C., Takumi, S.: Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. — Gene Genet. Syst. 81: 77–91, 2006.CrossRefGoogle Scholar
  22. Ernst, H.A., Olsen, A.N., Larsen, S., Lo., Leggio, L.: Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. — EMBO Rep. 5: 297–303, 2004.PubMedCrossRefGoogle Scholar
  23. Finkelstein, R., Gampala, S.S.L., Lynch, T.J., Thomas, T.L., Rock, C.D.: Redundant and distinct functions of the ABA response loci ABAINSENSITIVE (ABI)5 and ABRE-BINDING FACTOR (ABF)3. — Plant mol. Biol. 59: 253–267, 2005.PubMedCrossRefGoogle Scholar
  24. Finkelstein, R., Lynch, T.: The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. — Plant Cell 12: 599–609, 2000.PubMedCrossRefGoogle Scholar
  25. Finkelstein, R.R., Gampala, S.S.L., Rock, C.D.: Abscisic acid signaling in seeds and seedlings. — Plant Cell 14(Suppl.): S15–S45, 2002.PubMedGoogle Scholar
  26. Fujita, M., Fujita, Y., Maruyama, K., Seki, M., Hiratsu, K., Ohme-Takagi, M., Tran, L.-S.P., Yamaguchi-Shinozaki, K., Shinozaki, K.: A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. — Plant J. 39: 863–876, 2004.PubMedCrossRefGoogle Scholar
  27. Fujita, Y., Fujita, M., Satoh, R., Maruyama, K., Parvez, M.M., Seki, M., Hiratsu, K., Ohme-Takagi, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: AREB1 Is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. — Plant Cell. 17: 3470–88, 2005.PubMedCrossRefGoogle Scholar
  28. Furihata, T., Maruyama, K., Fujita, Y., Umezawa, T., Yoshida, R., Shinozaki, K., Yamaguchi-Shinozaki, K.: Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. — Proc. nat. Acad. Sci. USA 103: 1988–1993, 2006.PubMedCrossRefGoogle Scholar
  29. Gilmour, S.J., Sebolt, A.M., Salazar, M.P., Everard, J.D., Thomashow, M.F.: Overexpression of Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. — Plant Physiol. 124: 1854–1865, 2000.Google Scholar
  30. Gilmour, S.J., Zarka, D.G., Stockinger, E.J., Salazar, M.P., Houghton, J.M., Thomashow, M.F.: Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. — Plant J. 16: 433–442, 1998.PubMedCrossRefGoogle Scholar
  31. Giuliano, G., Pichersky, E., Malik, V.S., Timko, M.P., Scolnik, P.A., Cashmore, A.R.: An evolutionary conserved protein binding sequence upstream of a plant light-regulated gene. — Proc. nat. Acad. Sci. USA 85: 7089–7093, 1988.PubMedCrossRefGoogle Scholar
  32. Grill, E., Himmelbach, A.: ABA signal transduction. — Curr. Opin. Plant Biol. 1: 412–418, 1998.PubMedCrossRefGoogle Scholar
  33. Goodrich, J., Carpenter, R., Coen, E.S.: A common gene regulates pigmentation pattern in diverse plant species. — Cell 68: 955–964, 1992.PubMedCrossRefGoogle Scholar
  34. Guiltnan, M.J., Marcotte, W.R., Quatrano, R.S.: A plant. leucine zipper protein that recognizes an abscisic acid response element. — Science 250: 267–271, 1990.CrossRefGoogle Scholar
  35. Haake, V., Cook, D., Riechmann, J.L., Pineda, O., Thomashow, M.F., Zhang, J.Z.: Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. — Plant Physiol. 130: 639–648, 2002.PubMedCrossRefGoogle Scholar
  36. He, X.-J., Mu, R.-L., Cao, W.-H., Zhang, Z.-G., Zhang, J.-S., Chen, S.-Y.: AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. — Plant J. 44: 903–916, 2005.PubMedCrossRefGoogle Scholar
  37. Hong, J.P., Kim, W.T.: Isolation and functional characterization of the Ca-DREBLP1 gene encoding a dehydration-responsive element binding-factor-like protein 1 in hot pepper (Capsicum annum L. cv. Pukang). — Planta 220: 875–888, 2005.PubMedCrossRefGoogle Scholar
  38. Hsieh, T.S., Lee, J.T., Yang, P.T., Chiu, L.H., Charng, Y.Y., Wang, Y.C., Chan, M.T.: Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. — Plant Physiol. 129: 1086–1094, 2002.PubMedCrossRefGoogle Scholar
  39. Hu, H., Dai, M., Yao, J., Xiao, B., Li, X., Zhang, Q., Xiong, L.: Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. — Proc. nat. Acad. Sci. USA 35: 12987–12992, 2006.CrossRefGoogle Scholar
  40. Hu, H., You, J., Fang, Y., Zhu, X., Qi, Z., Xiong, L.: Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. — Plant mol. Biol. 67: 169–181, 2008.PubMedCrossRefGoogle Scholar
  41. Ingram, J., Bartels, D.: The molecular basis of dehydration tolerance in plants. — Annu. Rev. Plant Physiol. Plant mol. Biol. 47: 377–403, 1996.PubMedCrossRefGoogle Scholar
  42. Ishitani, M., Xiong, L., Stevenson, B., Zhu, J. K.: Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic aciddependent and abscisic acid-independent pathways. — Plant Cell 9: 1935–1949, 1997.PubMedCrossRefGoogle Scholar
  43. Jaglo, K.R., Kleff, S., Amundsen, K.L., Zhang, X., Haake, V., Zhang, J.Z., Deits, T., Thomashow, M.F.: Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. — Plant Physiol. 127: 910–917, 2001.PubMedCrossRefGoogle Scholar
  44. Jakoby, M., Weisshaar, B., Droege-Laser, W., Vicente-Carbajosa, J., Tiedemann, J., Kroj, T., Parcy, F.: bZIP transcription factors in Arabidopsis. — Trends Plant Sci. 7: 106–111, 2002.PubMedCrossRefGoogle Scholar
  45. Kagaya, Y., Hobo, T., Murata, M., Ban, A., Hattori, T.: Abscisic acid-induced transcription is mediated by phosphorylation of an abscisic acid response element binding factor, TRAB1. — Plant Cell 14: 3177–3189, 2002.PubMedCrossRefGoogle Scholar
  46. Kang, J., Choi, H., Im, M., Kim, S.Y.: Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. — Plant Cell 14: 343–357, 2002.PubMedCrossRefGoogle Scholar
  47. Kasuga, M., Miura, S., Shinozaki, K., Yamaguchi-Shinozaki, K.: A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought-and low-temperature stress tolerance in tobacco by gene transfer. — Plant Cell Physiol. 45: 346–350, 2004.PubMedCrossRefGoogle Scholar
  48. Kikuchi, K., Ueguchi-Tanaka, M., Yoshida, K.T., Nagato, Y., Matsusoka, M., Hirano, H.Y.: Molecular analysis of the NAC gene family in rice. — Mol. gen. Genet. 262: 1047–1051, 2000.PubMedCrossRefGoogle Scholar
  49. Kim, S., Kang, J.Y., Cho, D.I., Park, J.H., Kim, S.Y.: ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. — Plant J. 40: 75–87, 2004.PubMedCrossRefGoogle Scholar
  50. Kim, S.G., Kim, S.Y., Park, C.M.: A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis. — Planta 226: 647–654, 2007.PubMedCrossRefGoogle Scholar
  51. Kim, S.G., Lee, A.K., Yoon, H.K., Park, C.M.: A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination. — Plant J. 55: 77–88, 2008.PubMedCrossRefGoogle Scholar
  52. Kiyosue, T., Yamaguchi-Shinozaki, K., Shinozaki, K.: Characterization of a cDNA for a dehydration-inducible gene that encodes a Clp A, B-like protein in Arabidopsis thaliana L. — Biochem. biophys. Res. Commun. 196: 1214–1220, 1993.PubMedCrossRefGoogle Scholar
  53. Kiyosue, T., Yamaguchi-Shinozaki, K., Shinozaki, K.: Cloning of cDNAs for genes that are early-responsive to dehydration stress (ERDs) in Arabidopsis thaliana L.: identification of three ERDs as HSP cognate genes. — Plant mol. Biol. 25: 791–798, 1994.PubMedCrossRefGoogle Scholar
  54. Kobayashi, Y., Murata, M., Minami, H., Yamamoto, S., Kagaya, Y., Hobo, T., Yamamoto, A., Hattori, T.: Abscisic acid-activated SNRK2 protein kinases function in the generegulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. — Plant J. 44: 939–949, 2005.PubMedCrossRefGoogle Scholar
  55. Kobayashi, F., Maeta, E., Terashima, A., Kawaura, K., Ogihara, Y., Takumi, S.: Development of abiotic stress tolerance via bZIP-type transcription factor LIP19 in common wheat. — J. exp. Bot. 59: 891–905, 2008a.PubMedCrossRefGoogle Scholar
  56. Kobayashi, F., Ishibashi, M., Takumi, S.: Transcriptional activation of Cor/Lea genes and increase in abiotic stress tolerance through expression of a wheat DREB2 homolog in transgenic tobacco. — Transgenic Res. 17: 755–767, 2008b.PubMedCrossRefGoogle Scholar
  57. Koornneef, M., Leon-Kloosterziel, K.M., Schwartz, S., Hand, Zeevart, J.A.D.: The genetic and molecular dissection of abscisic and biosynthesis and signal transduction in Arabidopsis. — Plant Physiol. Biochem. 36: 83–89, 1998.CrossRefGoogle Scholar
  58. Kume, S., Kobayashi, F., Ishibashi, M., Ohno, R., Nakamura, C., Takumi, S.: Differential and coordinated expression of Cbf and Cor/Lea genes during long-term cold acclimation in two wheat cultivars showing distinct levels of freezing tolerance. — Genes Genet. Syst. 80: 185–197, 2005.PubMedCrossRefGoogle Scholar
  59. Kusano, T., Berberich, T., Harada, M., Suzuki, N., Sugawara, K.: A maize DNA-binding factor with a bZIP motif is induced by low temperature. — Mol. Gen. Genet. 248: 507–517, 1995.PubMedCrossRefGoogle Scholar
  60. Lang, V., Mantyla, E., Welin, B., Sundberg, B., Palva, E.T.: Alterations in water status, endogenous abscisic acid content, and expression of rab18 gene during the development of freezing tolerance in Arabidopsis thaliana. — Plant Physiol. 104: 1341–1349, 1994.PubMedGoogle Scholar
  61. Leung, J., Merlot, S., Giraudat, J.: The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatase 2C involved in abscisic acid signal transduction. — Plant Cell 9: 759–771, 1997.PubMedCrossRefGoogle Scholar
  62. Li, X.P., Tian, A.G., Luo, G.Z., Gong, Z.Z., Zhang, J., Chen, S.Y.: Soybean DRE-binding transcription factors that are responsive to abiotic stresses. — Theor. Appl. Genet. 110: 1355–1362, 2005.PubMedCrossRefGoogle Scholar
  63. Liao, Y., Zhang, J.-S., Chen, S.-Y., Zhang, W.-K.: Role of soybean GmbZip132 under abscisic acid and salt stresses. — J. Int. Plant Biol. 50: 221–230, 2008b.CrossRefGoogle Scholar
  64. Liao, Y., Zou, H., Wei, W., Hao, Y.J., Tian, A.G., Huang, J., Liu, Y.-F., Zhang, J.-S., Chen, S.-Y.: Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. — Planta 228: 225–240, 2008a.PubMedCrossRefGoogle Scholar
  65. Liao, Y., Zou, H.-F., Wang, H.-W., Zhang, W.-K., Ma, B., Zhang, J.-S.: Soybean GmMYB76, GmMYB92, and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants. — Cell Res. 18: 1047–1060, 2008c.PubMedCrossRefGoogle Scholar
  66. Liu, L., Zhu, K., Yang, Y., Wu, J., Chen, F., Yu, D.: Molecular cloning, expression profiling and trans-activation property studies of a DREB2-like gene from chrysanthemum (Dendranthema vestitum). — J. Plant Res. 121: 215–226, 2008.PubMedCrossRefGoogle Scholar
  67. Liu, Q., Kasuga, M., Sakumam Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K.: Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low- temperature-responsive gene expression, respectively, in Arabidopsis. — Plant Cell 10: 1391–1406, 1998.PubMedCrossRefGoogle Scholar
  68. Liu, Z.-B., Ulmasov, T., Shi, X., Hagen, G., Guilfoyle, T.: Soybean GH3 promoter contains multiple auxin-inducible elements. — Plant Cell 6: 645–657, 1994.PubMedCrossRefGoogle Scholar
  69. Lopez-Molina, L., Mongrand, S., Chua, N.-H.: A post germination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. — Proc. nat. Acad. Sci. USA 98: 4782–4787, 2001.PubMedCrossRefGoogle Scholar
  70. Lu, P.-L., Chen, N.-Z., An, R., Su, Z., Qi, B.-S., Ren, F., Chen, J., Wg, X.-C.: A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. — Plant mol. Biol. 63: 289–305, 2007.PubMedCrossRefGoogle Scholar
  71. Magome, H., Yamaguchi, S., Hanada, A., Kamiya, Y., Oda, K.: Dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. — Plant J. 37: 720–729, 2004.PubMedCrossRefGoogle Scholar
  72. Mason, H.S., DeWald, D.B., Mullet, J.E.: Identification of a methyl jasmonate-responsive domain in soybean vspB promoter. — Plant Cell 5: 241–251, 1993.PubMedCrossRefGoogle Scholar
  73. McKendree, W.L., Jr., Ferl, R.J.: Functional elements of the Arabidopsis Adh promoter include the G-box. — Plant mol. Biol. 19: 859–862, 1992.PubMedCrossRefGoogle Scholar
  74. Medina, J., Bargues, M., Terol, J., Pérez-Alonso, M., Salinas, J.: The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. — Plant Physiol. 119: 463–469, 1999.PubMedCrossRefGoogle Scholar
  75. Merlot, S., Costi, F., Guerrier, D., Vavasseur, A., Giraudat, J.: The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signaling pathway. — Plant J. 25: 295–303, 2001.PubMedCrossRefGoogle Scholar
  76. Mundy, J., Yamaguchi-Shinozaki, K., Chua, N.: Nuclear proteins bind conserved elements in the abscisic acidresponsive promoter of a rice rab gene. — Proc. nat. Acad. Sci. USA 87: 1406–1410, 1990.PubMedCrossRefGoogle Scholar
  77. Nakashima, K., Kiyosue, T., Yamaguchi-Shinozaki, K., Shinozaki, K.: A nuclear gene, erd1, encoding a chloroplast targeted Clp protease regulatory subunit homolog is not only induced by water stress but also developmentally upregulated during senescence in Arabidopsis thaliana. — Plant J. 12: 851–861, 1997.PubMedCrossRefGoogle Scholar
  78. Nakashima, K., Tran, L.-S.P., Nguyen, D.V., Fujita, M., Maruyama, K., Todaka, D., Ito, Y., Hayashi, N., Shinozaki, K., Yamaguchi-Shinozaki, K.: Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. — Plant J. 51: 617–630, 2007.PubMedCrossRefGoogle Scholar
  79. Narusaka, Y., Nakashima, K., Shinwari, Z.K., Sakuma, Y., Furihata, T., Abe, H., Narusaka, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. — Plant J. 34: 137–148, 2003.PubMedCrossRefGoogle Scholar
  80. Nogueira, F.T.S., Schlögl P.S., Camargo, S.R., Fernandez, J.H., De Rosa, Jr., V.E., Pompermayer, P., Arruda, P.: SsNAC23, a member of the NAC domain protein family, is associated with cold, herbivory and water stress in sugarcane. — Plant Sci. 169: 93–106, 2005.CrossRefGoogle Scholar
  81. Novillo, F., Alonso, J.M., Ecker, J.R., Salinas, J.: CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. — Proc. nat. Acad. Sci. USA 101: 3985–3990, 2004.PubMedCrossRefGoogle Scholar
  82. Ohnishi, T., Sugahara, S., Yamada, T., Kikuchi, K., Yoshiba, Y., Hirano, H.Y., Tsutsumi, N.: OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. — Genes Genet. Syst. 80: 135–139, 2005.PubMedCrossRefGoogle Scholar
  83. Olsen, A.N., Ernst, H.A., Lo Leggio, L., Skriver, K.: DNA-binding specificity and molecular functions of NAC transcription factors. — Plant Sci. 169: 785–797, 2005.CrossRefGoogle Scholar
  84. Ooka, H., Satoh, K., Doi, K., Nagata, T., Otomo, Y., Murakami, K., Matsubara, K., Osato, N., Kawai, J., Carninci, P., Hayashizaki, Y., Suzuki, K., Kojima, K., Takahara, Y., Yamamoto, K., Kikuchi, S.: Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. — DNA Res. 10: 239–247, 2003.PubMedCrossRefGoogle Scholar
  85. Pasquali, G., Biricolti, S., Locatelli, F., Baldoni, E., Mattana, M.: Osmyb4 expression improves adaptive responses to drought and cold stress in transgenic apples. — Plant Cell Rep. 27: 1677–1686, 2008.PubMedCrossRefGoogle Scholar
  86. Pastori, G.M., Foyer, C.H.: Common component networks, and pathways of cross-tolerance to stress. The control of ‘redox’ an abscisic acid-mediated controls. — Plant Physiol. 129: 460–468, 2002.PubMedCrossRefGoogle Scholar
  87. Pospíšilová, J., Synková, H., Haisel, D. Baťková, P.: Effect of abscisic acid on photosynthetic parameters during ex vitro transfer of micropropagated tobacco plantlets. — Biol. Plant. 53: 11–20, 2009.CrossRefGoogle Scholar
  88. Qin, F., Kakimoto, M., Sakuma, Y., Maruyama, K., Osakabe, Y., Tran, L.-S.P., Shinozaki, K., Yamaguchi-Shinozaki, K.: Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. — Plant J. 50: 54–69, 2007.PubMedCrossRefGoogle Scholar
  89. Qin, X.-F., Holuigue, L., Horvath, D.M., Chua, N.H.: Immediate early transcription activation by salicylic acid via the cauliflower mosaic virus as-1 element. — Plant Cell 6: 863–874, 1994.PubMedCrossRefGoogle Scholar
  90. Romero, I., Fuertes, A., Benito, M.J., Malpical, J.M., Leyva, A., Paz-Ares, J.: More than 80 R2R3-MYB regulatory genes in the genome of Arabidopsis thaliana. — Plant J. 14: 273–284, 1998.PubMedCrossRefGoogle Scholar
  91. Ruggiero, B., Koiwa, H., Manabe, Y., Quist, T.M., Inan, G., Saccardo, F., Joly, R.J., Hasegawa, P.M., Bressan, R.A., Maggio, A.: Uncoupling the effects of ABA on plant growth and water relations: analysis of sto1/nced3, BA deficient salt stress tolerant mutant in Arabidopsis thaliana. — Plant Physiol. 136: 3134–3147, 2004.PubMedCrossRefGoogle Scholar
  92. Sakuma, Y., Maruyama, K., Osakabe, Y., Qin, F., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. — Plant Cell 18: 1292–1309, 2006a.PubMedCrossRefGoogle Scholar
  93. Sakuma, Y., Maruyama, K., Qin, F., Osakabe, Y., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. — Proc. nat. Acad. Sci. USA 103: 18828–18833, 2006b.CrossRefGoogle Scholar
  94. Savitch, L.V., Allard, G., Seki, M., Robert, L.S., Tinker, N.A., Huner, N.P.A., Shinozaki, K., Singh, J.: The effect of overexpression of two Brassica CBF/DREB1-like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napus. — Plant Cell Physiol. 46: 1525–1539, 2005.PubMedCrossRefGoogle Scholar
  95. Saxena, S.N., Kaushik, N., Sharma, R.: Effect of abscisic acid and proline on in vitro flowering in Vigna aconitifolia. — Biol. Plant. 52: 181–183, 2008.CrossRefGoogle Scholar
  96. Schramm, F., Larkindale, J., Kiehlmann, E., Ganguli, A., Englich, G., Vierling, E., Von Koskull-Döring, P.: A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. — Plant J. 53: 264–274, 2008.PubMedCrossRefGoogle Scholar
  97. Seki, M., Narusaka, M., Abe, H., Kasuga, M., Yamaguchi-Shinozaki, K., Carninci, P., Hayashizaki, Y., Shinozaki, K.: Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. — Plant Cell 13: 61–72, 2001.PubMedCrossRefGoogle Scholar
  98. Shen, Q., Ho, T.-H.D.: Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element. — Plant Cell 7: 295–307, 1995.PubMedCrossRefGoogle Scholar
  99. Shen, Y.G., Zhang, W.K., He, S.J., Zhang, J.S., Liu, Q., Chen, S.Y.: An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. — Theor. appl. Genet. 106: 923–930, 2003b.PubMedGoogle Scholar
  100. Shen, Y.G., Zhang, W.K., Yan, D.Q., Du, B.X., Zhang, J.S., Liu, Q., Chen, S.Y.: Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis. — Theor. appl. Genet. 107: 155–161, 2003a.PubMedGoogle Scholar
  101. Shinozaki, K., Yamaguchi-Shinozaki, K.: Molecular responses to dehydration and low temperature: differences and crosstalk between two stress signaling pathways. — Curr. Opin. Plant Biol. 3: 217–223, 2000.PubMedGoogle Scholar
  102. Simpson, S.D., Nakashima, K., Narusaka, Y., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene, function in induction by dehydration stress and dark-induced senescence. — Plant J. 33: 259–270, 2003.PubMedCrossRefGoogle Scholar
  103. Souer, E., Van Houwelingen, A., Kloos, D., Mol, J., Koes, R.: The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordial boundaries. — Cell 85: 159–170, 1996.PubMedCrossRefGoogle Scholar
  104. Sreenivasulu, N., Radchuk, V., Strickert, M., Miersch, O., Weschke, W., Wobus, U.: Gene expression patterns reveal tissue-specific signaling networks controlling programmed cell death and ABA regulated maturation in developing barley seeds. — Plant J. 47: 310–327, 2006.PubMedCrossRefGoogle Scholar
  105. Tanimoto, S., Miyazaki, A., Harada, H.: Regulation by abscisic acid of in vitro flower formation in Torenia stem segments. — Plant Cell Physiol. 26: 675–682, 1985.Google Scholar
  106. Thomashow, M.F.: Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. — Ann. Rev. Plant Physiol. Plant mol. Biol. 50: 571–599, 1999.CrossRefGoogle Scholar
  107. Tran, L.-S.P., Nakashima, K., Sakuma, Y., Osakabe, Y., Qin, F., Simpson, S.D., Maruyama, K., Fujita, Y., Shinozaki, K., Yamaguchi-Shinozaki, K.: Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. — Plant J. 49: 46–63, 2007.PubMedCrossRefGoogle Scholar
  108. Tran, L.-S.P., Nakashima, K., Sakuma, Y., Simpson, S.D., Fujita, Y., Maruyama, K., Fujita, M., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. — Plant Cell 16: 2481–2498, 2004.PubMedCrossRefGoogle Scholar
  109. Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K., Yamaguchi-Shinozaki, K.: Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. — Proc. nat. Acad. Sci. USA. 97: 11632–11637, 2000.PubMedCrossRefGoogle Scholar
  110. Vannini, C., Locatelli, F., Bracale, M., Magnani, E., Marsoni, M., Osnato, M., Mattana, M., Baldoni, E., Coraggio, I.: Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. — Plant J. 37: 115–127, 2004.PubMedCrossRefGoogle Scholar
  111. Vannini, M., Campa, M., Iriti, M, Genga, A., Faoro, F., Carravieri, S., Rotino, G.L., Rossoni, M., Spinardi, A., Bracale, M.: Evaluation of transgenic tomato plants ectopically expressing the rice Osmyb4 gene. — Plant Sci. 173: 231–239, 2007.CrossRefGoogle Scholar
  112. Verslues, P.E., Zhu, J.K.: Before and beyond ABA: upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. — Biochem. Soc. Trans. 33: 375–379, 2005.PubMedCrossRefGoogle Scholar
  113. Wang, Q., Guan, Y., Wu, Y., Chen, H., Chen, F., Chu, C.: Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. — Plant mol. Biol. 67: 589–602, 2008.PubMedCrossRefGoogle Scholar
  114. Xiong, Y., Fei, S.-Z.: Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass (Lolium perenne L.). — Planta 224: 878–888, 2006.PubMedCrossRefGoogle Scholar
  115. Xiong, L., Ishitani, M., Lee, H., Zhu, J.-K.: HOS5-a negative regulator of osmotic stress-induced gene expression in Arabidopsis thaliana. — Plant J. 19: 569–578, 1999a.PubMedCrossRefGoogle Scholar
  116. Xiong, L., Ishitani, M., Lee, H., Zhu, J.-K.: The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. — Plant Cell 13: 2063–2083, 2001.PubMedCrossRefGoogle Scholar
  117. Xiong, L., Ishitani, M., Zhu, J.K.: Interaction of osmotic stress, temperature, and abscisic acid in the regulation of gene expression in Arabidopsis. — Plant Physiol. 119: 205–211, 1999b.PubMedCrossRefGoogle Scholar
  118. Xiong, L., Lee, B.-H., Ishitani, M., Zhu, J.-K.: Regulation of osmotic stress responsive gene expression by LOS6/ABA1 locus in Arabidopsis. — J. biol. Chem. 277: 8588–8596, 2002.PubMedCrossRefGoogle Scholar
  119. Yamaguchi-Shinozaki, K., Shinozaki, K.: The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. — Mol. gen. Genet. 238: 17–25, 1993.PubMedGoogle Scholar
  120. Yamaguchi-Shinozaki, K., Shinozaki, K.: A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. — Plant Cell 6: 251–264, 1994.PubMedCrossRefGoogle Scholar
  121. Yang, Y., Wu, J., Zhu, K., Liu, L., Chen, F., Yu, D.: Identification and characterization of two chrysanthemum (Dendronthema × morifolium) DREB genes, belonging to the AP2/EREBP family. — Mol. biol. Rep. 36: 71–81, 2009.PubMedCrossRefGoogle Scholar
  122. Zhao, J., Ren, W., Zhi, D., Wang, L., Xia, G.: Arabidopsis DREB1A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress. — Plant Cell Rep. 26: 1521–1528, 2007.PubMedCrossRefGoogle Scholar
  123. Zhao, T.J., Sun, S., Liu, Y., Liu, J.M., Liu, Q., Yan, Y.B., Zhou, H.M.: Regulating the drought-responsive element (DRE)-mediated signaling pathway by synergic functions of transactive and trans-inactive DRE binding factors in Brassica napus. — J. biol. Chem. 281: 10752–10759, 2006.PubMedCrossRefGoogle Scholar
  124. Zhou, B., Guo, Z.: Calcium is involved in the abscisic acidinduced ascorbate peroxidase, superoxide dismutase and chilling resistance in Stylosanthes guianensis. — Biol. Plant. 53: 63–68, 2009.CrossRefGoogle Scholar
  125. Zou, M., Guan, Y., Ren, H., Zhang, F., Chen, F.: A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. — Plant. mol. Biol. 66: 675–83, 2008.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Discipline of Marine Biotechnology and Ecology, Central Salt and Marine Chemicals Research InstituteCouncil of Scientific and Industrial ResearchBhavnagarIndia

Personalised recommendations