Biologia Plantarum

, Volume 54, Issue 1, pp 54–60 | Cite as

Comparison of three genetic similarity coefficients based on dominant markers from predominantly self-pollinating species

  • A. Beharav
  • M. Maras
  • M. Kitner
  • J. Šuštar-Vozlič
  • G. L. Sun
  • I. Doležalová
  • A. Lebeda
  • V. Meglič
Original Papers

Abstract

Three genetic similarity coefficients were estimated and compared for their usefulness: simple matching (SSM), Jaccard’s (SJ) and Dice’s (SD), all based on dominant markers data from individuals representing predominantly self-pollinating species. AFLP markers were used to analyze 139 Phaseolus vulgaris L. (common bean) and 67 Lactuca saligna L. (least lettuce) accessions, and RAPD markers were used to analyze 110 Triticum dicoccoides Koern. (wild emmer wheat) accessions. Similar discriminating structure and power based on the three genetic similarity coefficients was found for each of the three species. This discriminating power was high for both P. vulgaris and L. saligna but moderate for T. dicoccoides. With closely related individuals, as in our study, the absence of a band in two individuals should be due to an identical cause inherited from the same ancestor. Accordingly we propose the use of SSM, which alone out of the three examined coefficients involved shared absence of DNA bands, as contributing to genetic similarity. When RAPDs are employed, inferences about population structure and nucleotide divergence should be made with prudence as the nature of genetic variation uncovered by RAPDs is often unclear.

Additional key words

closely related individuals Lactuca saligna negative matches Phaseolus vulgaris Triticum dicoccoides 

Abbreviations

AFLP

amplified fragment length polymorphism

CCC

cophenetic correlations coefficients

D

dissimilarity

OUT

operational taxonomic unit

RAPD

random amplified polymorphic DNA

S

similarity

UPGMA

unweighted pair group method with the arithmetic averages

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnesky, A.L., Lammers, T.G.: Revision of the endemic Asian genus Peracarpa (Campanulaceae: Campanuloideae) via numerical phenetics. — Bot. Bull. Acad. sin. 38: 49–56, 1997.Google Scholar
  2. Belaj, A., Satovic, Z., Cipriani, G., Baldoni, L., Testolin, R., Rallo, L., Trujillo, I.: Comparative study of the discriminating capacity of RAPD, AFLP and SSR markers and of their effectiveness in establishing genetic relationships in olive. — Theor. appl. Genet. 107: 736–744, 2003.CrossRefPubMedGoogle Scholar
  3. Cordeiro, A.I., Sanchez-Sevilla, J.F., Alvarez-Tinaut, M.C., Gomez-Jimenez, M.C.: Genetic diversity assessment in Portugal accessions of Olea europaea by RAPD markers. — Biol. Plant. 52: 642–647, 2008.CrossRefGoogle Scholar
  4. Dice, L.R.: Measures of the amount of ecologic association between species. — Ecology 26: 297–302, 1945.CrossRefGoogle Scholar
  5. Duarte, J.M., Santos, J.B., Melo, L.C.: Comparison of similarity coefficients based on RAPD markers in the common bean. — Genet. mol. Biol. 22: 427–432, 1999.Google Scholar
  6. Dudley, J.W.: Comparison of genetic distance estimators using molecular marker data. — In: Analysis of molecular marker data. Pp. 3–7. Amer. Soc. Hort. Sci., Crop Sci. Soc. Amer., Corvallis 1994.Google Scholar
  7. Fahima, T., Sun, G.L., Beharav, A., Krugman, T., Beiles, A., Nevo, E.: RAPD polymorphism of wild emmer wheat populations, Triticum dicoccoides, in Israel. — Theor. appl. Genet. 98: 434–447, 1999.CrossRefGoogle Scholar
  8. Gower, J.C.: Measures of similarity, dissimilarity and distances. — In: Kotz, S., Johnson, N.L., Read, C.L. (ed.): Encyclopedia of Statistical Sciences. Vol. 5. — Wiley, New York 1985.Google Scholar
  9. Jaccard, P.: Nouvelles recherches sur la distribution florale. — Bull. Soc. Vaud. Sci. natur. 44: 223–270, 1908.Google Scholar
  10. Kitner, M., Lebeda, A., Doležalová, I., Maras, M., Křístková, E., Beharav, A., Nevo, E., Pavlíček, T., Meglič, V.: AFLP analysis of Lactuca saligna germplasm collections from four European and three Middle East countries. — Isr. J. Plant Sci. 56: 185–193, 2008.CrossRefGoogle Scholar
  11. Kosman, E., Leonard, K.J.: Similarity coefficients for molecular markers in studies of genetic relationships between individuals for haploid, diploid, and polyploid species. — Mol. Ecol. 14: 415–424, 2005.CrossRefPubMedGoogle Scholar
  12. Lamboy, W.F.: Computing genetic similarity coefficients from RAPD data: the effects of PCR artifacts. — PCR Methods Appl. 4: 31–37, 1994.PubMedGoogle Scholar
  13. Lynch, M., Milligan, B.: Analysis of population genetic structure with RAPD markers. — Mol. Ecol. 3: 91–99, 1994.CrossRefPubMedGoogle Scholar
  14. Mantel, N.A.: The detection of disease clustering and a generalized regression approach. — Cancer Res. 27: 209–220, 1967.PubMedGoogle Scholar
  15. Nei, M., Li, W.H.: Mathematical models for studying genetic variation in terms of restriction endonucleases. — Proc. nat. Acad. Sci. USA 76: 5269–5273, 1979.CrossRefPubMedGoogle Scholar
  16. Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., Rafalski, A.: The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. — Mol. Breed. 2: 225–238, 1996.CrossRefGoogle Scholar
  17. Reif, J.C., Melchinger, A.E., Frisch, M.: Genetical and mathematical properties of similarity and dissimilarity coefficients applied in plant breeding and seed bank management. — Crop Sci. 45: 1–7, 2005.CrossRefGoogle Scholar
  18. Rohlf, F.J.: NTSYS-pc. Numerical Taxonomy and Multivariate Analysis System. — Applied Biostatistics, New York 1998.Google Scholar
  19. Romesburg, H.C.: Cluster Analysis for Researchers. — Krieger Publ. Comp., Malabar 1984.Google Scholar
  20. Schweder, M.E., Shatters, R.G., West, S.H., Smith, R.L.: Effect of transition interval between melting and annealing temperatures on RAPD analyses. — Biotechniques 38: 40–42, 1995.Google Scholar
  21. Simioniuc, D., Uptmoor, R., Friedt, W., Ordon, F.: Genetic diversity and relationships among pea cultivars revealed by RAPDs and AFLPs. — Plant Breed. 121: 429–435, 2002.CrossRefGoogle Scholar
  22. Sneath, P.H.A., Sokal, R.R.: Numerical Taxonomy. The Principles and Practice of Numerical Classification. — W.H. Freeman and Company, San Francisco 1973.Google Scholar
  23. Sokal, R.R., Michener, C.D.: A statistical method for evaluating systematic relationships. — Univ. Kansas Sci. Bull. 38: 1409–1438, 1958.Google Scholar
  24. Sokal, R.R., Rohlf, F.J.: The comparison of dendrograms by objective methods. — Taxon 11: 33–40, 1962.CrossRefGoogle Scholar
  25. Šuštar-Vozlič, J., Maras, M., Javornik, B., Meglič, V.: Genetic diversity and origin of Slovene common bean (Phaseolus vulgaris L.) germplasm as revealed by AFLP markers and phaseolin analysis. — J. amer. Soc. hort. Sci. 131: 242–249, 2006.Google Scholar
  26. Vijayan, K., Awasthi, A.K., Srivastava, P.P., Saratchandra, B.: Genetic analysis of Indian mulberry varieties through molecular markers. — Hereditas 141: 8–14, 2004.CrossRefPubMedGoogle Scholar
  27. Weising, K., Nybom, H., Wolff, K., Meyer, W.: DNA Fingerprinting in Plants and Fungi. — CRC Press, Boca Raton 1995.Google Scholar
  28. Williams, J.G.K., Kubelik, A.R., Llivak, K.J., Rafalski, J.A., Tingey, S.V.: DNA polymorphism amplified by arbitrary primers are useful as genetic markers. — Nucl. Acids Res. 18: 6531–6535, 1990.CrossRefPubMedGoogle Scholar
  29. Yap, I.V., Nelson, R.J.: WinBoot: A Program for Performing Bootstrap Analysis of Binary Data to Determine the Confidence Limits of UPGMA-based Dendograms. — International Rice Research Institute, Manila 1996.Google Scholar
  30. Zeid, M., Schon, C.C., Link, W.: Genetic diversity in recent elite faba bean lines using AFLP markers. — Theor. appl. Genet. 107: 1304–1314, 2003.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • A. Beharav
    • 1
  • M. Maras
    • 2
  • M. Kitner
    • 3
  • J. Šuštar-Vozlič
    • 2
  • G. L. Sun
    • 4
  • I. Doležalová
    • 3
  • A. Lebeda
    • 3
  • V. Meglič
    • 2
  1. 1.Institute of EvolutionUniversity of HaifaMount Carmel, HaifaIsrael
  2. 2.Agricultural Institute of SloveniaLjubljanaSlovenia
  3. 3.Faculty of SciencePalacký University in OlomoucOlomouc-HoliceCzech Republic
  4. 4.Biology DepartmentSaint Mary’s UniversityHalifaxCanada

Personalised recommendations