Advertisement

Biologia Plantarum

, 53:737 | Cite as

Responses of Camellia sinensis cultivars to Cu and Al stress

  • S. K. YadavEmail author
  • P. Mohanpuria
Brief Communication

Abstract

The response of Camellia sinensis (L.) O. Kuntze cultivars Chinary and Assamica to Cu and Al stresses was investigated. Exposure to 100 µM CuSO4 or 100 µM AlCl3 led to accumulation of reactive oxygen species (ROS) more in Assamica than in Chinary. Proline content was higher in Chinary compared to Assamica, while chlorophyll and protein contents decreased upon Cu and Al exposure in both the cultivars. Expression of glutathione biosynthetic enzymes γ-glutamylcysteinyl synthetase (γ-ECS) and glutathione synthetase (GSHS) was elevated. Phytochelatin synthase (PCS), an enzyme involved in phytochelatins synthesis by using glutathione as a substrate was up-regulated at its transcript level more in Chinary than in Assamica. These results suggest that Chinary could be more tolerant than Assamica.

Additional key words

gene expression glutathione metabolic enzymes oxidative stress proline tea 

Abbreviations

γ-ECS

γ-glutamylcysteinyl synthetase

GSH

glutathione

GSHS

glutathione synthetase

PCs

phytochelatins

PCS

phytochelatin synthase

ROS

reactive oxygen species

References

  1. Ahsan, N., Lee, D.G., Lee, S.H., Kang, K.Y., Lee, J.J., Kim, P.J., Yoon, H.S., Kim, J.S., Lee, B.H.: Excess copper induced physiological and proteomic changes in germinating rice seeds. — Chemosphere 67: 1182–1193, 2007.CrossRefPubMedGoogle Scholar
  2. Alia, Saradhi, P.P., Mohanty, P.: Involvement of proline in protecting thylakoid membranes against free radicalinduced photodamage. — J. Photochem. Photobiol. B 38: 253–257, 1997.CrossRefGoogle Scholar
  3. Bálint, A.F., Röder, M.S., Hell, R., Galiba, G., Börner, A.: Mapping of QTLs affecting copper tolerance and the Cu, Fe, Mn and Zn contents in the shoots of wheat seedlings. — Biol. Plant. 51: 129–134, 2007.CrossRefGoogle Scholar
  4. Basak, M., Sharma, M., Chakraborty, U.: Biochemical response of Camellia sinensis (L.) O. Kuntze to heavy metal stress. — J. environ. Biol. 22: 37–41, 2001.PubMedGoogle Scholar
  5. Bates, L.S., Waldren, R.P., Teare, I.D.: Rapid determination of free proline for water-stress studies. — Plant Soil 39: 205–207, 1973.CrossRefGoogle Scholar
  6. Blum, R., Beck, A., Korte, A., Stengel, A., Letzel, T., Lendzian, K., Grill, E.: Function of phytochelatin synthase in catabolism of glutathione-conjugates. — Plant J. 49: 740–749, 2007.CrossRefPubMedGoogle Scholar
  7. Bradford, M.N.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.CrossRefPubMedGoogle Scholar
  8. Cuypers, A., Koistinen, K.M., Kokko, H., Kärenlampi, S., Auriola, S., Vangronsveld, J.: Analysis of bean (Phaseolus vulgaris L.) proteins affected by copper stress. — J. Plant Physiol. 162: 383–392, 2005.CrossRefPubMedGoogle Scholar
  9. Delhaize, E., Hebb, D.M., Richards, K.D., Lin, J.M., Ryan, P.R., Gardner, R.C.: Cloning expression of a wheat (Triticum aestivum L.) phosphatidylserine synthase cDNA: overexpression in plants alter the composition of phospholipids. — J. biol. Chem. 274: 7082–7088, 1999.CrossRefPubMedGoogle Scholar
  10. Gallego, F.J., Benito, C.: Genetic control of aluminum tolerance in rye (Secale cereale L.). — Theor. appl. Genet. 95: 393–399, 1997.CrossRefGoogle Scholar
  11. Goodwin, S.B., Sutter, T.R.: Microarray analysis of Arabidopsis genome response to aluminum stress. — Biol. Plant. 53: 85–99, 2009.CrossRefGoogle Scholar
  12. Grill, E., Winnaker, E.L., Zenk, M.H.: Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothionineins. — Proc. nat. Acad. Sci. USA 34: 439–443, 1987.CrossRefGoogle Scholar
  13. Hare, P.D., Cress, W.A.: Metabolic implications of stress induced proline accumulation in plants. — Plant Growth Regul. 21: 79–102, 1997.CrossRefGoogle Scholar
  14. Kumar, S., Singla-Pareek, S.L., Reddy, M.K., Sopory, S.K.: Glutathione: biosynthesis, homeostasis and its role in abiotic stresses. — J. Plant Biol. 30: 179–187, 2003.Google Scholar
  15. Liso, R., De Tullio, M.C., Ciraci, S., Balestrini, R., La Rocca, N., Bruno, L., Chiappetta, A., Bitonti, M.B., Bonfante, P., Arrigoni, O.: Localization of ascorbic acid, ascorbic acid oxidase, and glutathione in roots of Cucurbita maxima L. — J. exp. Bot. 55: 2589–2597, 2004.CrossRefPubMedGoogle Scholar
  16. Maksymiec, W., Krupa Z.: Effects of methyl jasmonate and excess copper on root and leaf growth. — Biol. Plant. 51: 322–326, 2007.CrossRefGoogle Scholar
  17. Maksymiec, W., Wojcik, M., Krupa, Z.: Variation in oxidative stress and photochemical activity in Arabidopsis thaliana leaves subjected to cadmium and excess copper in the presence or absence of jasmonate and ascorbate. — Chemosphere 66: 421–427, 2007.CrossRefPubMedGoogle Scholar
  18. May, M.J., Vernoux, T., Sanchez-Fernandez, R., Van Montagu, M., Inze, D.: Evidence for posttranscriptional activation of gamma-glutamylcysteine synthetase during plant stress responses. — Proc. nat. Acad. Sci. USA 95: 12049–12054, 1998.CrossRefPubMedGoogle Scholar
  19. Mohanpuria, P., Rana, N.K., Yadav, S.K.: Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis (L.) O. Kuntze. — Environ. Toxicol. 67: 368–374, 2007.CrossRefGoogle Scholar
  20. Mossor-Pietraszewska, T., Kwit, M., Legiewicz, M.: The influence of aluminium ions on activity changes of some dehydrogenases and aminotransferases in yellow lupine. — Biol. Bull. Poznan 34: 47–48, 1997.Google Scholar
  21. Mouratao, M.P., Martins, L.L., Campos-Andrada, M.P.: Physiological responses of Lupinus luteus to different copper concentrations. — Biol. Plant. 53: 105–111, 2009.CrossRefGoogle Scholar
  22. Nguyen, V.T., Burow, M.D., Nguyen, H.T., Le, B.T., Le, T.D., Paterson, A.H.: Molecular mapping of genes conferring aluminum tolerance in rice (Oryza sativa L.). — Theor. appl. Genet. 102: 1002–1010, 2001.CrossRefGoogle Scholar
  23. Quartacci, M.F., Cosi, E., Navari-Izzo, F.: Lipids and NADPH-dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency or excess. — J. exp. Bot. 52: 77–84, 2001.CrossRefPubMedGoogle Scholar
  24. Rao, K.V.M., Sresty, T.V.S.: Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. — Plant Sci. 157: 113–128, 2000.CrossRefGoogle Scholar
  25. Richards, K.D., Schott, E.J., Sharma, Y.K., Davis, K.R., Gardner, R.C.: Aluminum induces oxidative stress genes in Arabidopsis thaliana. — Plant Physiol. 116: 409–418, 1998.CrossRefPubMedGoogle Scholar
  26. Sanita di Toppi, L., Gabbrielli, R.: Response to cadmium in higher plants. — Environ. exp. Bot. 41: 105–130, 1999.CrossRefGoogle Scholar
  27. Sarry, J.E., Kuhn, L., Ducruix, C., Lafaye, A., Junot, C., Hugouvieux, V., Jourdain, A., Bastien, O., Fievet, J.B., Vailhen, D., Amekraz, B., Moulin, C., Ezan, E., Garin, J., Bourguignon, J.: The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. — Proteomics 6: 2180–2198, 2006.CrossRefPubMedGoogle Scholar
  28. Shamsi, I. H., Wei, K., Jilani, G., Zhang, G.P.: Interactions of cadmium and aluminum toxicity in their effect on growth and physiological parameters in soybean. — J. Zhejiang Univ. Sci. 8: 181–188, 2007.CrossRefGoogle Scholar
  29. Shigeoka, S., Ishikawa, T., Tamoi, M., Miyagawa, Y., Takeda, T., Yabuta, Y., Yoshimura, K.: Regulation and function of ascorbate peroxidase isoenzymes. — J. exp. Bot. 53: 1305–1319, 2002.CrossRefPubMedGoogle Scholar
  30. Singh, K., Raizada, J., Bhardwaj, P., Ghawana, S., Rani, A., Singh, H., Kaul, K., Kumar, S.: 26S rRNA-based internal control gene primer pair for reverse transcriptionpolymerase chain reaction-based quantitative expression studies in diverse plant species. — Anal. Biochem. 335: 330–333, 2004.CrossRefPubMedGoogle Scholar
  31. Singla-Pareek, S.L., Yadav, S.K., Pareek, A., Reddy, M.K., Sopory, S.K.: Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. — Plant Physiol. 140: 613–623, 2006.CrossRefPubMedGoogle Scholar
  32. Wang, C., Oliver, D.J.: Cloning of the cDNA and genomic clones for glutathione synthetase from Arabidopsis thaliana and complementation of a gsh2 mutant in fission yeast. — Plant mol. Biol. 31: 1093–1104, 1996.CrossRefPubMedGoogle Scholar
  33. Xiang, C., Oliver, D.J.: Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. — Plant Cell 10: 1539–1550, 1998.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Biotechnology DivisionInstitute of Himalayan Bioresource Technology (CSIR)PalampurIndia

Personalised recommendations