Biologia Plantarum

, 53:560 | Cite as

Abscisic acid and auxin accumulation in Catasetum fimbriatum roots growing in vitro with high sucrose and mannitol content

Brief Communication

Abstract

Endogenous contents of indolyl-3-acetic acid (IAA) and abscisic acid (ABA) were quantified in excised roots of Catasetum fimbriatum (Orchidaceae) cultured in vitro on solidified Vacin and Went medium with 1, 2, 4, 6, 8 and 10 % sucrose, as well as 2 % sucrose plus mannitol. Maximum root growth was observed in media with 4 % sucrose and 2 % sucrose plus 2.2 % mannitol, suggesting that a moderate water or osmotic stress promotes orchid root growth. Contents of both ABA and IAA increased in parallel to increasing sucrose concentration and a correlation between root elongation and the ABA/IAA ratio was observed. Incubating isolated C. fimbriatum roots with radiolabeled tryptophan, we showed an accumulation of IAA and its conjugates.

Additional key words

hormone interactions root elongation osmotic stress 

Abbreviations

ABA

abscisic acid

ELISA

enzyme linked immunosorbent assay

HPLC

high performance liquid chromatography

IAA

indole-3-acetic acid

References

  1. Belefant, H., Fong, F.: Abscisic acid ELISA: organic acid interference. — Plant Physiol. 91: 1467–1470, 1989.CrossRefPubMedGoogle Scholar
  2. Benzing, D.H.: Aerial roots and their environments. — In: Waiser, Y., Eshe, A., Kafkafi, U. (ed.): Plant Roots: the Hidden Half. Pp. 875–894. Marcel Dekker, New York 1996.Google Scholar
  3. Brady, S.M., Sarkar, S.F., Bonetta, D., McCourt, P.: The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. — Plant J. 34: 67–75, 2003.CrossRefPubMedGoogle Scholar
  4. Colli, S., Kerbauy, G.B.: Direct root tip conversion of Catasetum into protocorm-like bodies. Effects of auxin and cytokinin. — Plant Cell Tissue Organ Cult 33: 39–44, 1993.CrossRefGoogle Scholar
  5. Feldman, L.: Auxin biosynthesis and metabolism in isolated roots of Zea mays. — Physiol. Plant. 49: 145–150, 1980.CrossRefGoogle Scholar
  6. Gonçalves, S., Romano, A.: In vitro minimum growth for conservation of Drosophyllum lusitanicum. — Biol. Plant. 51:795–798, 2007.CrossRefGoogle Scholar
  7. Grossmann, K., Scheltrup, F., Kwiatkowski, J., Gaspar, G.: Induction of abscisic acid is a common effect of auxin herbicides in susceptible plants. — J. Plant Physiol. 149: 475–478, 1996.Google Scholar
  8. Kerbauy, G.B.: The effects of sucrose and agar on the formation of protocorm-like bodies in recalcitrant root tip meristems of Oncidium varicosum Lindl. — Lindleyana 8: 149–154, 1993.Google Scholar
  9. Ljung, K., Hull, A.K., Celenza, J., Yamada, M., Estelle, M., Normanly, J., Sandberg, G.: Sites and regulation of auxin biosynthesis in Arabidopsis roots. — Plant Cell 17: 1090–1104, 2005.CrossRefPubMedGoogle Scholar
  10. Madhulatha, P., Kirubakaran, S.I., Sakthivel, N.: Effects of carbon sources and auxins on in vitro propagation of banana. — Biol. Plant. 50: 782–784, 2006.CrossRefGoogle Scholar
  11. Maldiney, R., Leroux, B., Sabbaghi, I., Sotta, B., Sossountzov, L., Miginiac, E.: A biotin-avidin-based enzyme immunoassay to quantify three phytohormones: auxin, abscisic acid, and zeatin riboside. — J. Immunol. Methods 90: 151–158, 1986.CrossRefGoogle Scholar
  12. Mingozzi, M., Morini, S.: In vitro cultivation of donor quince shoots affects subsequent morphogenesis in leaf explants. — Biol. Plant. 53: 141–144, 2009.CrossRefGoogle Scholar
  13. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. — Physiol. Plant. 15: 473–497, 1962.CrossRefGoogle Scholar
  14. Normanly, J., Slovin, J.P., Cohen, J.D.: Rethinking auxin biosynthesis and metabolism. — Plant Physiol. 107: 323–329, 1995.PubMedGoogle Scholar
  15. Patel, D., Thaker, V.S.: Estimation of endogenous contents of phytohormones during internode development in Merremia emarginata. — Biol. Plant. 51: 75–79, 2007.CrossRefGoogle Scholar
  16. Peres, L.E.P., Amar, S., Kerbauy, G.B., Salatino, A., Zaffari, G.R., Mercier, H.: Effects of auxin, cytokinin and ethylene treatments on the endogenous ethylene and auxin-tocytokinin ratio related to direct root tip conversion of Catasetum fimbriatum Lindl. (Orchidaceae) into buds. — J. Plant Physiol. 155: 551–555, 1999.Google Scholar
  17. Peres, L.E.P., Kerbauy, G.B.: High cytokinin accumulation following root tip excision changes the endogenous auxin to cytokinin ratio during root-to-shoot conversion in Catasetum fimbriatum Lindl. (Orchidaceae). — Plant Cell Rep. 18: 1002–1006, 1999.CrossRefGoogle Scholar
  18. Peres, L.E.P., Majerowicz, N., Kerbauy, G.B.: Dry matter partitioning differences between shoots and roots in two contrasting genotypes of orchids and their relationship with endogenous levels of auxins, cytokinins and abscisic acid. — Braz. J. Plant Physiol. 13: 185–195, 2001.Google Scholar
  19. Peres, L.E.P., Mercier, H., Kerbauy, G.B., Zaffari, G.R.: [Endogenous levels of IAA, cytokinins and ABA in a shootless orchid and a rootless bromeliad determined by means of HPLC and ELISA.] — Braz. J. Plant Physiol. 9: 169–176, 1997. [In Portuguese]Google Scholar
  20. Pilet, P.E., Elliott, M.C., Moloney, M.M.: Endogenous and exogenous auxin in the control of root growth. — Planta 146: 405–408, 1979.CrossRefGoogle Scholar
  21. Pilet, P.E., Saugy, M.: Effect of root growth of endogenous and applied AIA and ABA. A critical reexamination. — Plant Physiol. 83: 33–38, 1987.CrossRefPubMedGoogle Scholar
  22. Pritchard, J.: The control of cell expansion in roots. — New Phytol. 127: 3–26, 1994.CrossRefGoogle Scholar
  23. Ribaut, J.M., Pilet, P.E.: Effect of water stress on growth osmotic potential and abscisic acid content of maize roots. — Physiol. Plant. 81: 156–162, 1991.CrossRefGoogle Scholar
  24. Ribaut, J.M., Pilet, P.E.: Water stress and indol-3yl-acetic acid content of maize roots. — Planta 193: 502–507, 1994.CrossRefGoogle Scholar
  25. Ribaut, J.M., Schaerer, S., Pilet, P.E.: Deuterium-labeled indole-3-acetic acid neo-synthesis in plantlets and excised roots of maize. — Planta 189: 80–82, 1993.CrossRefGoogle Scholar
  26. Saab, I.N., Sharp, Q.E., Pritchard, J., Voetberg, G.S.: Increased endogenous abscisic acid maintains primary root growth and inhibits shoot growth of maize seedlings of low water potentials. — Plant Physiol. 93: 1329–1336, 1990.CrossRefPubMedGoogle Scholar
  27. Sanford, W.W.: The ecology of orchids. — In: Withner, C.L. (ed.): The Orchids: Scientific Studies. Pp. 1–100. John Wiley & Sons, New York 1974.Google Scholar
  28. Sharp, R.E., Wu, Y., Voetberg, G.S., Saab, I.N., LeNoble, M.E.: Confirmation that abscisic acid accumulation is required for maize primary root elongation at low water potentials. — J. exp. Bot. 45: 1743–1751, 1994.Google Scholar
  29. Spollen, W.G., LeNoble, M.E., Samuels, T.D., Bernstein, N., Sharp, R.E.: Abscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production. — Plant Physiol. 122: 967–976, 2000.CrossRefPubMedGoogle Scholar
  30. Stoop, J.M.H., Williamson, J.D., Pharr, D.M.: Mannitol metabolism in plants: a method for coping with stress. — Trends Plant Sci. 1: 139–144, 1996.CrossRefGoogle Scholar
  31. Suzuki, M., Dao, C.-Y., Cocciolone, S., McCarty, D.R.: Maize VP1 complements Arabidopsis abi3 and confers a novel ABA/auxin interaction in roots. — Plant J. 28: 409–418, 2001.CrossRefPubMedGoogle Scholar
  32. Vacin, E.F., Went, F.W.: Some pH changes in nutrient solutions. — Bot. Gaz. 110: 605–617, 1949.CrossRefGoogle Scholar
  33. Verslues, P.E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J., Zhu, J.-K.: Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. — Plant J. 45: 523–539, 2006.CrossRefPubMedGoogle Scholar
  34. Vinterhalter, B., NinkoviĆ, S., Cingel, A., Vinterhalter, D.: Shoot and root culture of Hypericum perforatum L. transformed with Agrobacterium rhizogenes A4M70GUS. — Biol. Plant. 50: 767–770, 2006.CrossRefGoogle Scholar
  35. Walton, D.C., Harrison, M.A., Cotê, P.: The effects of water stress on abscisic-acid levels and metabolism in roots of Phaseolus vulgaris L. and other plants. — Planta 131: 141–144, 1976.CrossRefGoogle Scholar
  36. Wotavová-Novotná, K., Vejsadová, H., Kindlmann, P.: Effects of sugars and growth regulators on in vitro growth of Dactylorhiza species. — Biol. Plant. 51: 198–200, 2007.CrossRefGoogle Scholar
  37. Xin, Z.-Y., Zhou, Z., Pilet, P.E.: Level changes of jasmonic, abiscisic, and indole-3yl-acetic acids in maize under desiccation stress. — J. Plant Physiol. 151: 120–124, 1997.Google Scholar
  38. Zaffari, G.R., Peres, L.E.P., Kerbauy, G.B.: Endogenous levels of cytokinins, IAA, ABA and pigments in variegated somaclones of micropropagated banana leaves. — J. Plant Growth Regul. 17: 59–61, 1998.CrossRefGoogle Scholar
  39. Zaffari, G.R., Peres, L.E.P., Tcacenco, F.A., Kerbauy, G.B.: Indole-3-acetic acid metabolism in normal and dwarf micropropagated banana plants (Musa spp. AAA). — Braz. J. of Plant Physiol. 14: 211–217, 2002.Google Scholar
  40. Zhang, J., Davies, W.J.: Abscisic acid produced in dehydrating roots may enable the plant to measure the water status of the soil. — Plant Cell Environ. 12: 73–81, 1989.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Biological Sciences (LCB), Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ)Universidade de São PauloPiracicaba, SPBrazil
  2. 2.Departament of Botany, Institute of BiosciencesUniversidade de São PauloSão Paulo, SPBrazil

Personalised recommendations