Advertisement

Biologia Plantarum

, Volume 53, Issue 2, pp 351–354 | Cite as

Increase in isoprene and monoterpene emissions after re-watering of droughted Quercus ilex seedlings

  • J. Peñuelas
  • I. Filella
  • R. Seco
  • J. Llusià
Brief Communication

Abstract

We followed the diurnal cycles of isoprenoid emissions from Quercus ilex seedlings under drought and after re-watering. We found that Quercus ilex, generally considered a non-isoprene emitter, also emitted isoprene although at low rates. The emission rates of isoprene reached 0.37 ± 0.02 nmol m−2 s−1 in controls, 0.15 ± 0.03 nmol m−2 s−1 under drought and 0.35 ± 0.04 nmol m−2 s−1 after re-watering, while emission rates of monoterpenes reached 11.0 ± 3.0, 7.0 ± 1.0 and 23.0 ± 5.0 nmol m−2 s−1, respectively. Emission rates recovered faster after re-watering than photosynthetic rate and followed diurnal changes in irradiance in controls and under drought, but in leaf temperature after re-watering.

Additional key words

light-dependent emissions net photosynthetic rate PTR-MS stomatal conductance temperature-dependent emissions VOCs 

Abbreviations

VOCs

volatile organic compounds

PTR-MS

proton-transfer-reaction mass spectrometer

PN

net photosynthetic rate

gs

stomatal conductance

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brilli, F., Barta, C., Fortunati, A., Lerdau, M., Loreto, F., Centritto, M.: Response of isoprene emission and carbon metabolism to drought in white poplar (Populus alba) saplings.-New Phytol. 175: 244–254, 2007.PubMedCrossRefGoogle Scholar
  2. Fang, C.W., Monson, R.K., Cowling, E.B.: Isoprene emission, photosynthesis, and growth in sweetgum (Liquidambar styraciflua L.) seedlings exposed to repeated cycles of water stress.-Tree Physiol. 16: 441–446, 1996.PubMedGoogle Scholar
  3. Filella, I., Wilkinson, M., Llusià, J., Hewitt, C.N., Peñuelas, J.: Volatile organic compounds emissions in Norway spruce (Picea abies) in response to temperature changes.-Physiol Plant. 130: 58–66, 2007.CrossRefGoogle Scholar
  4. Filella, I., Peñuelas, J.: Daily weekly and seasonal relationships among VOCs, NOx and O3 in a semi-urban area near Barcelona.-J. Atmos. Chem. 54:189–201, 2006.CrossRefGoogle Scholar
  5. Funk, J.L., Jones, C.G., Gray, D.W., Throop, H.L., Hyatt, L.A., Lerdau, M.T.: Variation in isoprene emission from Quercus rubra: Sources, causes, and consequences for estimating fluxes.-J. Geophys. Res. 110(D0): 4301, 2005.CrossRefGoogle Scholar
  6. Guenther, A., Hewitt, C.N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., Zimmerman, P.: A global model of natural volatile organic compound emissions.-J. Geophys. Res. 100: 8873–8892, 1995.CrossRefGoogle Scholar
  7. Harley, P., Monson, R., Lerdau, M.: Ecological and evolutionary aspects of isoprene emission from plants.-Oecologia 118: 109–123, 1999.CrossRefGoogle Scholar
  8. Kavouras, I.G., Mihalopoulos, N., Stephanou, E.G.: Formation of atmospheric particles from organic acids produced by forests.-Nature 395: 683–686, 1998.CrossRefGoogle Scholar
  9. Kesselmeier, J., Staudt, M.: Biogenic volatile organic compounds (VOC) an overview on emission, physiology and ecology.-J. Atmos. Chem. 33: 23–88, 1999.CrossRefGoogle Scholar
  10. Lindinger, W., Hansel, A., Jordan, A.: On-line monitoring of volatile organic compounds at pptv levels by means of Proton-Transfer-Reaction Mass Spectrometry (PTR-MS). Medical applications, food control and environmental research.-Int. J. Mass Spectrom. Ion Proc. 173: 191–241, 1998.CrossRefGoogle Scholar
  11. Llusià, J., Peñuelas, J.: Changes in terpene content and emission in potted Mediterranean woody plants under severe drought.-Can. J. Bot. 76: 1366–1373, 1998.CrossRefGoogle Scholar
  12. Llusià, J., Peñuelas, J.: Pinus halepensis and Quercus ilex terpene emission rates as affected by temperature and humidity.-Biol. Plant. 42: 317–320, 1999.CrossRefGoogle Scholar
  13. Llusià, J., Peñuelas, J.: Seasonal patterns of terpene content and emission from seven Mediterranean woody species in field conditions.-Amer. J. Bot. 87: 133–140, 2000.CrossRefGoogle Scholar
  14. Loreto, F., Ciccioli, P., Brancaleoni, E., Valentini, R., De Lillis, M., Csiky, O., Seufert, G.: A hypothesis on the evolution of isoprenoid emission by oaks based on the correlation between emission type and Quercus taxonomy.-Oecologia 115: 302–305, 1998.CrossRefGoogle Scholar
  15. Loreto, F.: Distribution of isoprenoid emitters in the Quercus genus around the world: chemo-taxonomical implications and evolutionary considerations based on the ecological function of the trait.-Perspect. Plant Ecol. 5: 185–190, 2002.CrossRefGoogle Scholar
  16. Monson, R.K., Trahan, N., Rosenstiel, T.N., Veres, P., Moore, D., Wilkinson, M., Norby, R.J., Volder, A., Tjoelker, M.G., Briske, D.D., Karnosky, D.F., Fall, R.: Isoprene emission from terrestrial ecosystems in response to global change: minding the gap between models and observations.-Phil. Trans. roy. Soc. A 365: 1677–1695, 2007.CrossRefGoogle Scholar
  17. Niinemets, U., Loreto, F., Reichstein, M.: Physiological and physicochemical controls on foliar volatile organic compound emissions.-Trends Plant Sci. 9: 180–186, 2004.PubMedCrossRefGoogle Scholar
  18. Owen, S., Boissard, C., Street, R., Duckham, S.C., Csiky, O., Hewitt, C.N.: The BEMA Project: Screening of 18 Mediterranean plant species for volatile organic compound emissions.-Atmos. Environ. 31: 101–118, 1997.CrossRefGoogle Scholar
  19. Owen, S., Peñuelas, J.: Opportunistic emissions of volatile isoprenoids.-Trends Plant Sci. 10: 420–426, 2005.PubMedCrossRefGoogle Scholar
  20. Peñuelas, J., Llusià, J.: Seasonal emission of monoterpenes by the Mediterranean tree Quercus ilex in field conditions: relations with photosynthetic rates, temperature and volatility.-Physiol. Plant. 105: 641–647, 1999a.CrossRefGoogle Scholar
  21. Peñuelas, J., Llusià, J.: Short-term responses of terpene emission rates to experimental changes of PFD in Pinus halepensis and Quercus ilex in summer field conditions.-Environ. exp. Bot. 42: 61–68, 1999b.CrossRefGoogle Scholar
  22. Peñuelas, J., Llusià, J.: The complexity of factors driving volatile organic compound emissions by plants.-Biol. Plant. 44: 481–487, 2001.CrossRefGoogle Scholar
  23. Peñuelas, J., Llusià, J.: BVOCs: Plant defense against climate warming?-Trends Plant Sci. 8: 105–109, 2003.PubMedCrossRefGoogle Scholar
  24. Peñuelas, J., Filella, I., Sabate, S., Gracia, C.: Natural systems: terrestrial ecosystems.-In: Llebot, J.E. (ed.): Report on Climate Change in Catalonia. Pp. 517–553. Institut d’Estudis Catalans, Barcelona 2005.Google Scholar
  25. Peñuelas, J., Llusià, J., Filella, I.: Methyl salicylate fumigation increases monoterpene emission rates.-Biol. Plant. 51: 372–376, 2007.CrossRefGoogle Scholar
  26. Sabaté, S., Gracia, C., Sánchez, A.: Likely effects of climate change on growth of Quercus ilex, Pinus halepensis, Pinus pinaster, Pinus sylvestris and Fagus sylvatica forests in the Mediterranean region.-Forest Ecol. Manage. 162: 23–37, 2002.CrossRefGoogle Scholar
  27. Schnitzler, J.P., Steinbrecher, R., Zimmer, I., Steigner, D., Fladung, M.: Hybridization of European oaks (Quercus ilex × Q-robur) results in a mixed isoprenoid emitter type.-Plant Cell Environ. 27: 585–593, 2004.CrossRefGoogle Scholar
  28. Sharkey, T.D., Loreto, F.: Water stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves.-Oecologia 95: 328–333, 1993.CrossRefGoogle Scholar
  29. Staudt, M., Rambal, S., Joffre, R., Kesselmeier, J.: Impact of drought on seasonal monoterpene emissions from Quercus ilex in southern France.-J. Geophys. Res. 107(D21): 4602, 2002.CrossRefGoogle Scholar
  30. Tingey, D.T., Evans, R., Gumpertz, M.: Effects of environmental conditions on isoprene emission from live oak.-Planta 152: 565–570, 1981.CrossRefGoogle Scholar
  31. Zimmerman, P.R., Chatfield, R.B., Fishman, J., Crutzen, P.J., Hanst, P.L.: Estimates on the production of CO and H2 from the oxidation of hydrocarbon emissions from vegetation.-Geophys. Res. Lett. 5: 679–681, 1978.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Unitat d’Ecofisiologia i Canvi Global CSIC-CEAB-CREAFUniversitat Autònoma de BarcelonaBellaterra, BarcelonaSpain

Personalised recommendations