Biologia Plantarum

, Volume 53, Issue 2, pp 325–328 | Cite as

In vitro direct organogenesis and regeneration of Medicago sativa

  • J. J. Li
  • Y.M. Wu
  • T. Wang
  • J. X. Liu
Brief Communication


A rapid and efficient plant regeneration protocol for a wide range of alfalfa genotypes was developed via direct organogenesis. Through a successive excision of the newly developed apical and axillary shoots, a lot of adventitious buds were directly induced from the cotyledonary nodes when hypocotyl of explants were vertically inserted into modified Murashige and Skoog (MS) medium supplemented with 0.025 mg dm−3 thidiazuron (TDZ) and 3 mg dm−3 AgNO3. When the lower part of shoots excised from explants were immersed into the liquid medium with 1.0 mg dm−3 α-naphthaleneacetic acid (NAA) for 2 min, and then transferred to hormone free half-strength MS medium, over 83.3 % of the shoots developed roots, and all plantlets could acclimatize and establish in soil. The protocol has been successfully applied to eight genotypes, with regeneration frequencies ranging from 63.8 to 82.5 %.

Additional key words

alfalfa cotyledonary node mature embryo silver nitrate thidiazuron vitrification 



Murashige and Skoog


α-naphthaleneacetic acid




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barbulova, A., Iantcheva, A., Zhiponova, M., Vlahova, M., Atanassov, A.: Establishment of embryogenic potential of economically important Bulgarian alfalfa cultivars (Medicago sativa L.).-Biotechnol. biotechnol. Equipment 16: 55–63, 2002.Google Scholar
  2. Chong, J.G., Siew, K.N., Prakash, L., Chiang, S.L.: The role of ethylene on direct shoot bud regeneration from mangosteen (Garcinia mangostana L.) leaves cultured in vitro.-Plant Sci. 124: 193–202, 1997.CrossRefGoogle Scholar
  3. Derek, W.R., White, C.V.: Prolific direct plant regeneration from cotyledons of white clover.-Plant Cell Rep. 13: 303–308, 1994.Google Scholar
  4. Gamborg, O.L., Miller, R.A., Ojima, K.: Nutrient requirements of suspension cultures of soybean root cells.-Exp. Cell. Res. 50: 151–158, 1968.PubMedCrossRefGoogle Scholar
  5. Gilmnur, D.M., Davey, M.R., Cocking, E.C.: Plant regeneration from cotyledon protoplasts of wild Medicago species.-Plant Sci. 48: 107–112, 1987.CrossRefGoogle Scholar
  6. Gürel, E., Wren, M.J.: In vitro development from leaf explants of sugar beet (Beta vulgaris L.): rhizogenesis and the effect of sequential exposure to auxin and cytokinin.-Ann. Bot. 75: 31–38, 1995.CrossRefGoogle Scholar
  7. Kalia, R.K., Arya, S., Kalia, S., Arya, I.D.: Plantlet regeneration form fascicular buds of seedling shoot apices of Pinus roxburghii Sarg.-Biol. Plant. 51: 653–659, 2007.CrossRefGoogle Scholar
  8. Li, S., Li, W., Yang, D.L., Cao, Z.Y.: [Advance of research vitrification in plant test-tube plantlets.]-J. Gansu agr. Univ. 38: 1–16, 2003. [In Chin.]Google Scholar
  9. Liang, H.M., Huang, J., Xia, Y., W, T.M., Sun, Z.X., Li, X.Y.: [Establishment of high frequency regeneration system for tissue culture of alfalfa.]-J. agr. Biotechnol. 11: 321–322, 2003. [In Chin.]Google Scholar
  10. Loureiro, J., Capelo, A., Brito, G., Rodriguez, E., Silva, S., Pinto, G., Santos, C.: Micropropagation of Juniperus phoenicea from adult plant explants and analysis of ploidy stability using flow cytometry.-Biol. Plant. 51: 7–14, 2007.CrossRefGoogle Scholar
  11. Mallikarjuna, K., Rajendrudu, G.: High frequency in vitro propagation of Holarrhena antidysenterica from nodal buds of mature tree.-Biol. Plant. 51: 525–529, 2007.CrossRefGoogle Scholar
  12. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures.-Physiol. Plant. 15: 473–497, 1962.CrossRefGoogle Scholar
  13. Kataeva, N.V., Alexandrova, I.G., Butenko, R.G., Dragavtceva, E.V., Timiryazev, K.A.: Effect of applied and internal hormones on vitrification and apical necrosis of different plants cultured in vitro.-Plant Cell Tissue Organ Cult. 27: 149–154, 1991.CrossRefGoogle Scholar
  14. Ozden-Tokatli, Y., Ozudogru, E.A., Akcin, A.: In vitro response of pistachio nodal explants to silver nitrate.-Sci. Hort. 106: 415–426, 2005.CrossRefGoogle Scholar
  15. Piccioni, E., Barcaccia, G., Falcinelli, M., Standardi, A.: Estimating alfalfa somaclonal variation in axillary branching propagation and indirect somatic embryogenesis by RAPD fingerprinting.-int. J. Plant Sci. 158: 556–562, 1997.CrossRefGoogle Scholar
  16. Siddique, I., Anis, M.: Rapid micropropagation of Ocimum basilicum using shoot tip explants pre-cultured in thidiazuron supplemented liquid medium.-Biol. Plant. 51: 787–790, 2007.CrossRefGoogle Scholar
  17. Tian, L.N., Brown, D.C.W., Watson, E.: Continuous long-term somatic embryogenesis in alfalfa.-In Vitro Cell. Dev. Biol. Plant. 38: 279–284, 2002.CrossRefGoogle Scholar
  18. Vasudevan, A., Selvaraj, N., Ganapathi, A., Choi, C.W., Manickavasagam, M., Kasthurirengan, S.: Direct plant regeneration from cucumber embryonal axis.-Biol Plant. 51: 521–524, 2007.CrossRefGoogle Scholar
  19. Volenec, J.J., Cunningham, S.M., Haagenson, D.M., Berg, W.K., Joern, B.C., Wiersma, D.W.: Physiological genetics of alfalfa improvement: past failure, future prospects.-Field Crop. Res. 75: 97–110, 2002.CrossRefGoogle Scholar
  20. Zagorska, N., Dimitrov, B., Gadeva, P., Robeva, P.: Regeneration and characterization of plants obtained from anther cultures in Medicago sativa L.-In Vitro Cell. Dev. Biol. Plant. 33: 107–110, 1997.CrossRefGoogle Scholar
  21. Zhou, Y., Zhang, Z.Q., Zhang, J.J., Yin, L.Q.: [Study on overcome the vitrification of lettuce in genetic transformation.]-J. Jilin agr. Univ. 22: 62–64, 2000. [In Chin.]Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.College of Animal SciencesZhejiang UniversityHangzhouP.R. China

Personalised recommendations