Biologia Plantarum

, Volume 52, Issue 4, pp 767–770 | Cite as

Effects of 28-homobrassinolide on nickel uptake, protein content and antioxidative defence system in Brassica juncea

  • P. Sharma
  • R. Bhardwaj
  • N. Arora
  • H. K. Arora
  • A. Kumar
Brief Communication

Abstract

The effects of 28-homobrassinolide (HBL) on nickel uptake, protein content and activities of antioxidative enzymes were determined in the seedlings of Brassica juncea L. The seeds were treated with different concentrations (0, 0.01, 1 and 100 nM) of HBL for 8 h and then sown in the Petri plates containing various concentrations (0, 25, 50 and 100 mg dm−3) of nickel. After 7 d, observations were made on shoot and root length, Ni uptake, protein content and activities of antioxidative enzymes (guaiacol peroxidase, catalase, glutathione reductase, ascorbate peroxidase and superoxide dismutase). The growth of seedlings was inhibited by Ni, however, less after HBL pre-treatment. The protein content and antioxidative enzyme activities were also increased by HBL treatment.

Additional key words

antioxidative enzymes brassinosteroids heavy metal toxicity Indian mustard 

Abbreviations

APX

ascorbate peroxidase

BCF

bioconcentration factor

BRs

brassinosteroids

CAT

catalase

GR

glutathione reductase

HBL

28-homobrassinolide

POD

guaiacol peroxidase

ROS

reactive oxygen species

SOD

superoxide dismutase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aebi, H.: Catalase.-In: Bergmeyer, H.U. (ed.): Methods of Enzymatic Analysis. Pp. 673–684. Verlag-Chemie, Weinham 1974.Google Scholar
  2. Ali, B., Hayat, S., Ahmad, A.: Response of germinating seeds of Cicer arietinum to 28-homobrassinolide and/or potassium.-J. gen. appl. Plant Physiol. 31: 55–63, 2005.Google Scholar
  3. Allen, S.E., Grimshaw, H.M., Parkinson, J.A., Quarmby, C., Roberts, J.D.: Chemical Analysis.-In: Chapmann, S.B. (ed.): Methods in Plant Ecology. Pp. 424–426. Blackwell Scientific Publications, Oxford-London 1976.Google Scholar
  4. Bailey, N.T.J.: Statistical Methods in Biology (3rd Ed).-The English University Press, London 1995.Google Scholar
  5. Bajguz, A.: Blockage of heavy metal accumulation in Chlorella vulgaris cells by 24-epibrassinolide.-Plant Physiol. Biochem. 38: 797–801, 2000a.CrossRefGoogle Scholar
  6. Bajguz, A.: Effects of brassinosteroids on nucleic acids and protein in cultured cells in Chlorella vulgaris.-Plant Physiol. Biochem. 38: 209–215, 2000b.CrossRefGoogle Scholar
  7. Bhardwaj, R., Arora, H.K., Nagar, P.K., Thukral, A.K.: Brassinosteroids — a novel group of plant hormones.-In: Trivedi, P.C. (ed.): Plant Molecular Physiology — Current Scenario and Future Projections. Pp. 58–84. Aaviskar Publisher, Jaipur 2006.Google Scholar
  8. Bilkisu, A.A., Xiao-Gang, G., Qing-Lei, G., Yong-Hua, Y.: Brassinolide amelioration of aluminium toxicity in mungbean seedling growth.-J. Plant Nutr. 26: 1725–1734, 2003.CrossRefGoogle Scholar
  9. Cao, X., Ma, L.Q., Tu, C.: Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.).-Environ. Pollut. 128: 317–325, 2004.PubMedCrossRefGoogle Scholar
  10. Carlberg, I., Mannervik, B.: Purification of the flavoenzyme glutathione reductase from rat liver.-J. biol. Chem. 250: 5475–5480, 1975.PubMedGoogle Scholar
  11. Clouse, S.D., Sasse, J.M.: Brassinosteroids: essential regulators of plant growth and development.-Annu. Rev. Plant Physiol. Plant mol. Biol. 49: 427–451, 1998.PubMedCrossRefGoogle Scholar
  12. Dhaubhadel, S., Browning, K.S., Gallie, D.R., Krishna, P.: Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress.-Plant J. 29: 681–691, 2002.PubMedCrossRefGoogle Scholar
  13. Dhaubhadel, S., Chaudhary, S., Dobinson, K.F., Krishna, P.: Treatment with 24-epibrassinolide (a brassinosteroid) increases the basic thermotolerance of Brassica napus tomato seedlings.-Plant mol. Biol. 40: 333–342, 1999.PubMedCrossRefGoogle Scholar
  14. El-Shintinawy, F., El-Ansari, A.: Differential effect of Cd2+ and Ni2+ on amino acid metabolism in soybean seedling.-Biol. Plant. 43: 74–84, 2000.CrossRefGoogle Scholar
  15. Fariduddin, Q., Ahmad, A., Hayat, S.: Response of Vigna radiata to foliar application of 28-homobrassinolide and kinetin.-Biol. Plant. 48: 465–468, 2004.CrossRefGoogle Scholar
  16. Hayat, S., Ahmad, A.: Soaking seeds of Lens culinaris with 28-homobrassinolide increased nitrate reductase activity and grain yield in the field in India.-Ann. appl. Biol. 143: 121–124, 2003.CrossRefGoogle Scholar
  17. Janeczko, A., Koscielniak, J., Pilipowicz, M., Szarek-Lukaszewsa, G., Skoczowspi, A.: Protection of winter rape photosystem 2 by 24-epibrassinolide under cadmium stress.-Photosynthetica 43: 293–298, 2005.CrossRefGoogle Scholar
  18. Janeczko, A. Gullner, G., Skoczowski, A., Dubert, F., Barna, B.: Effects of brassinosteroid infiltration prior to cold treatment on ion leakage and pigment contents in rape leaves.-Biol. Plant. 51: 355–358, 2007.CrossRefGoogle Scholar
  19. Kalinich, J.F., Mandava, N.B., Todhunter, J.A.: Relationship of nucleic acid metabolism on brassinolide-induced responses in beans.-Plant Physiol. 120: 207–214, 1985.Google Scholar
  20. Kaur, S., Bhardwaj, R.: Brassinosteroids regulated heavy metals uptake in Brassica campestris L.-In: Annual Meeting of the American Society of Plant Biologists “Plant Biology 2003”. P. 628. Honolulu 2003.Google Scholar
  21. Kono, Y.: Generation of superoxide radical during autooxidation of hydroxylamine and an assay for superoxide dismutase.-Arch. Biochem. Biophys. 186: 189–195, 1978.PubMedCrossRefGoogle Scholar
  22. Kovtun, Y., Chiu, W.L., Tena Sheen, J.: Functional analysis of oxidative stress — activated mitogen — activated protein kinase cascade in plants.-Proc. nat. Acad. Sci. USA 97: 2940–2945, 2000.PubMedCrossRefGoogle Scholar
  23. Lin, Y.C., Kao, C.H.: Proline accumulation induced by excess nickel in detached rice leaves.-Biol. Plant. 51: 351–354, 2007.CrossRefGoogle Scholar
  24. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.L.: Protein measurement with Folin phenol reagent.-J. biol. Chem. 193: 265–275, 1951.PubMedGoogle Scholar
  25. Maksimović, I., Kastori, R., Krstić, L., Luković, J.: Steady presence of cadmium and nickel affects root anatomy, accumulation and distribution of essential ions in maize seedlings.-Biol. Plant. 51: 589–592, 2007.CrossRefGoogle Scholar
  26. Mandava, N.B.: Plant growth promoting brassinosteroids.-Annu. Rev. Plant Physiol. Plant mol. Biol. 39: 23–52, 1988.CrossRefGoogle Scholar
  27. Mazorra, L.M., Nunez, M., Hechavarria, M., Coll, F., Sanchez-Blanco, M.J.: Influence of brassinosteroids on antioxidants enzymes activity in tomato under different temperature.-Biol. Plant. 45: 593–596, 2002.CrossRefGoogle Scholar
  28. Meharg, A.A.: The role of the plasmalemma in metal tolerance in angiosperms.-Physiol. Plant. 88: 191–198, 1993.CrossRefGoogle Scholar
  29. Metwally, A., Finkemeier, I., Georgi, M., Dietz, K.J.: Salicylic acid alleviates the cadmium toxicity in barley seedlings.-Plant Physiol. 132: 272–281, 2003.PubMedCrossRefGoogle Scholar
  30. Nakano, Y., Asada, A.: Hydrogen peroxide is scavenged by ascorbate specific-peroxidase in spinach chloroplasts.-Plant Cell Physiol. 22: 867–880, 1981.Google Scholar
  31. Nunez, M., Mazzafera, P., Mazorra, L.M., Siqueira, W.J., Zullo, M.A.T.: Influence of brassinosteroid analogue on antioxidant enzymes in rice grown in culture medium with NaCl.-Biol. Plant. 47: 67–70, 2003.CrossRefGoogle Scholar
  32. Ozdemir, F., Bor, M., Demiral, T., Turkan, I.: Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress.-Plant Growth Regul. 42: 203–211, 2004.CrossRefGoogle Scholar
  33. Panda, S.K., Chaudhury, I., Khan, M.H.: Heavy metals induced lipid peroxidation and affect antioxidants in wheat leaves.-Biol. Plant. 46: 289–294, 2003.CrossRefGoogle Scholar
  34. Putter, J.: Peroxidase.-In: Bergmeyer, H.U. (ed): Methods of Enzymatic Analysis. Pp. 685–690. Verlag-Chemie, Weinham 1974.Google Scholar
  35. Sharma, P., Bhardwaj, R.: Effect of 24-epibrassinolide on growth and metal uptake in Brassica juncea L. under copper metal stress.-Acta Physiol. Plant. 29: 259–263, 2007a.CrossRefGoogle Scholar
  36. Sharma, P., Bhardwaj, R.: Effect of 24-epibrassinolide on seed germination, seedling growth and heavy metals uptake in Brassica juncea L.-J. gen. appl. Plant. Physiol. 33: 59–73, 2007b.Google Scholar
  37. Vahala, J., Keinanen, M., Schutzendubel, A., Polle, A., Kangasjarvi, J.: Differential effects of elevated ozone on two hybrid aspen genotypes predisposed to chronic ozone fumigation role of ethylene and salicylic acid.-Plant Physiol. 132: 196–205, 2003.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • P. Sharma
    • 1
  • R. Bhardwaj
    • 1
  • N. Arora
    • 1
  • H. K. Arora
    • 1
  • A. Kumar
    • 2
  1. 1.Department of Botanical and Environmental SciencesGuru Nanak Dev University, AmritsarPunjabIndia
  2. 2.Serum Institute of India Ltd.PuneIndia

Personalised recommendations