Advertisement

Biologia Plantarum

, 52:703 | Cite as

Differential expression of wheat transcriptomes in response to varying cadmium concentrations

  • O. Cebeci
  • B. Kokturk
  • N. Ergen
  • L. Ozturk
  • I. Cakmak
  • H. Budak
Original Papers

Abstract

This study aims to understand the changes in the transcriptome of durum wheat (Tricitum durum cv. Balcali-85) upon exposure to varying Cd concentrations using mRNA differential display (mRNA DD) technique. Sequence analyses of the two heavily induced genes upon exposure to Cd showed high homology to NADH dehydrogenase subunit 1 (EC907725) and PsaC gene encoding a photosystem 1 (PS 1) 9 kDa subunit protein (EC907731). Additionally, three differentially expressed genes (EC907726, EC907729 and EC907730) were identified. Their sequence analyses revealed no significant homologies to known genes. The expressions of NADH dehydrogenase subunit 1 and PsaC genes were confirmed by Northern blot analysis and quantified by real time PCR. This is the first report for the induction of NADH dehydrogenase subunit 1 gene during Cd stress in wheat.

Additional key words

cadmium-responsive genes functional genomics mRNA differential display Triticum durum 

Abbreviations

Ct

threshold cycle

GADPH

glyceraldehyde-3-phosphate dehydrogenase

GSH

glutathione

mRNA DD

mRNA differential display

PC

phytochelatin

PS 1

photosystem 1

RT-PCR

reverse transcriptase polymerase chain reaction

References

  1. Agrawal., V., Sharma, K.: Phytotoxic effects of Cu, Zn, Cd and Pb on in vitro regeneration and concomitant protein changes in Holarrhena antidysenterica.-Biol. Plant. 50: 307–310, 2006.CrossRefGoogle Scholar
  2. Barceló, J., Poschenrieder, C.: Plant water relations as affected by heavy metal stress: a review.-J. Plant Nutr. 13: 1–37, 1990.CrossRefGoogle Scholar
  3. Budak, H., Kasap, Z., Shearman, R.C., Dweikat, I., Sezerman, U., Mahmood, A.: Molecular characterization of cDNA encoding resistance gene like sequences in Buchloe dactyloides.-Mol. Biotechnol. 34: 293–301, 2006.PubMedCrossRefGoogle Scholar
  4. Ergen, N., Dinler, G., Shearman R.C., Budak, H.: Identifying, cloning, and structural analysis of differentially expressed genes upon Puccinia infection of Festuca rubra var. rubra.-Gene 393: 145–152, 2007PubMedCrossRefGoogle Scholar
  5. Drajić, G., Mihailović, N., Lojić, M.: Cadmium accumulation in Medicago sativa seedlings treated with salicylic acid.-Biol. Plant. 50: 239–244, 2006.CrossRefGoogle Scholar
  6. Geisler, D.A., Johansson, F.I., Svensson, Á.S., Rasmusson, A.G.: Antimycin A treatment decreases respiratory internal rotenone-insensitive NADH oxidation capacity in potato leaves.-BMC Plant Biol. 4: 1–10, 2004.CrossRefGoogle Scholar
  7. Grant, C.A., Buckley, W.T., Bailey, L.D., Selles, F.: Cadmium accumulation in crops.-Can. J. Plant Sci. 78: 1–17, 1998.Google Scholar
  8. Hall, J.L.: Cellular mechanisms for heavy metal detoxification and tolerance.-J. exp. Bot. 53: 1–11, 2002.PubMedCrossRefGoogle Scholar
  9. Hart, J.J., Welch, R.M., Norvell, W.A., Sullivan, L.A., Kochian, L.V.: Characterization of cadmium binding, uptake, and translocation in intact seedlings of bread and durum wheat cultivars.-Plant Physiol. 116: 1413–1420, 1998.PubMedCrossRefGoogle Scholar
  10. Herbette, S., Taconnat, L., Hugouvieux, V., Piette, L., Magniette, M.-L.M., Cuine, S., Auroy, P., Richaud, P., Forestier, C., Bourguignon, J., Renou, J.-P., Vavasseur, A., Leonhardt, N.: Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots.-Biochimie 88: 1751–1765, 2006.PubMedCrossRefGoogle Scholar
  11. Hodoshima, H., Enomoto, Y., Shoji, K., Shimada, H., Goto, F., Yoskihara, T.: Differential regulation of cadmium-inducible expression of iron-deficiency-responsive genes in tobacco and barley.-Physiol. Plant. 129: 622–634, 2007.CrossRefGoogle Scholar
  12. Ito, T., Kito, K., Adati, N., Mitsui, Y., Hagiwara, H., Sakaki, Y.: Fluorescent differential display: arbitrarily primed RT-PCR fingerprinting on an automated DNA sequencer.-FEBS Lett. 351: 231–236, 1994.PubMedCrossRefGoogle Scholar
  13. Kim, Y.K., Yoo, W.I., Lee, S.H., Lee, M.Y.: Proteomic analysis of cadmium-induced protein profile alterations from marine algae Nannochloropsis oculata.-Ecotoxicology 14: 589–596, 2005.PubMedCrossRefGoogle Scholar
  14. Krupa, Z.: Cadmium-induced changes in the composition and structure of the light harvesting complex II in radish cotyledons.-Physiol. Plant. 73: 518–524, 1998.CrossRefGoogle Scholar
  15. Larsson, E.H., Bornman, J.F., Asp, H.: Influence of UV-B radiation and Cd2+ on chlorophyll fluorescence, growth, and nutrient content in Brassica napus.-J. exp. Bot. 49: 1031–1039, 1998.CrossRefGoogle Scholar
  16. Liang, P., Pardee, A.B.: Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction.-Science 257: 967–971, 1992.PubMedCrossRefGoogle Scholar
  17. Lievens, S., Goormachtig, S., Holsters, M.A.: Critical evaluation of differential display as a tool to identify genes involved in legume nodulation: looking back and looking forward.-Nucleic Acids Res. 29: 3459–3468, 2001.PubMedCrossRefGoogle Scholar
  18. Liu, C.P., Shen, Z.G., Li, X.D.: Accumulation and detoxification of cadmium in Brassica pekinensis and B. chinensis.-Biol. Plant. 51: 116–120, 2007a.CrossRefGoogle Scholar
  19. Liu, D., Kottke, I., Adam, D.: Localization of cadmium in the root cells of Allium cepa by energy dispersive X-ray analysis.-Biol. Plant. 51: 363–366, 2007b.CrossRefGoogle Scholar
  20. Ortiz, D.F., Ruscitti, T., MacCue, K.F., Ow, D.W.: Transport of metal binding peptides by HMT-1, a fission yeast ABC-type vacuolar membrane protein.-J. biol. Chem. 270: 4721–4728, 1995.PubMedCrossRefGoogle Scholar
  21. Ozturk, L., Eker, S., Ozkutlu, F., Cakmak, I.: Effect of cadmium on growth and concentrations of cadmium, ascorbic acid and sulphydryl groups in durum wheat cultivars.-Turkish J. agr. Forest. 27: 161–168, 2003.Google Scholar
  22. Pfaffl, M.W.: A new mathematical model for relative quantification in real-time RT-PCR.-Nucleic Acids Res. 29: 2002–2007, 2001.CrossRefGoogle Scholar
  23. Rodriguez-Serrano, M., Romero-Puertas, M.C., Zabalza, A., Corpas, F.J., Gomez, M., del Rio, L.A., Sandalio, L.M.: Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo.-Plant Cell Environ. 29: 1532–1544, 2006.PubMedCrossRefGoogle Scholar
  24. Scebba, F., Arduini, I., Ercoli, L., Sebastiani, L.: Cadmium effects on growth and antioxidant enzymes activities in Miscanthus sinensis.-Biol. Plant. 50: 688–692, 2006.CrossRefGoogle Scholar
  25. Semane, B., Cuypers, A., Smeets, K., Van Belleghem, F., Horemans, N., Schat, H., Vangronsveld, J.: Cadmium responses in Arabidopsis thaliana: glutathione metabolism and antioxidative defence system.-Physiol. Plant. 129: 519–528, 2007.CrossRefGoogle Scholar
  26. Shah, K., Dubey, R.S.: Effect of cadmium on proline accumulation and ribonuclease activity in rice seedlings: role of proline as a possible enzyme protectant.-Biol. Plant. 40: 121–130, 1995.CrossRefGoogle Scholar
  27. Siedlecka, A., Baszynsky, T.: Inhibition of electron flow around photosystem I in chloroplasts of cadmium-treated maize plants is due to cadmium-induced iron deficiency.-Physiol. Plant. 87: 199–202, 1993.CrossRefGoogle Scholar
  28. Stohs, S.J., Bagchi, D., Hassoun, E., Bagchi, M.: Oxidative mechanisms in the toxicity of chromium and cadmium ions.-J. Environ. Pathol. Toxicol. Oncology 19: 201–213, 2000.Google Scholar
  29. Tiryakioglu, M., Eker, S., Ozkutlu, F., Husten, H., Cakmak, I.: Antioxidant defense system and cadmium uptake in barley genotypes differing in cadmium tolerance.-J. Trace Element med. Biol. 20: 181–189, 2005.CrossRefGoogle Scholar
  30. Vatamaniuk, O.K., Mari, S., Lu, Y.-P., Rea, P.A.: Mechanism of heavy metal ion activation of phytochelatin (PC) synthase-blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides.-J. biol. Chem. 275: 31451–31459, 2000.PubMedCrossRefGoogle Scholar
  31. Yiin, S.J., Chern, C.L., Sheu, J.Y., Lin, T.H.: Cadmium-induced liver, heart, and spleen lipid peroxidation in rats and protection by selenium.-Biol. Trace Elements Res. 78: 219–230, 2000.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • O. Cebeci
    • 1
  • B. Kokturk
    • 1
  • N. Ergen
    • 1
  • L. Ozturk
    • 1
  • I. Cakmak
    • 1
  • H. Budak
    • 1
  1. 1.Faculty of Engineering and Natural Sciences, Biological Sciences and Bio Engineering ProgramSabanci UniversityIstanbulTurkey

Personalised recommendations