Biologia Plantarum

, 52:601 | Cite as

The relationship between vernalization-and photoperiodically-regulated genes and the development of frost tolerance in wheat and barley

  • K. KosováEmail author
  • I. T. Prášil
  • P. Vítámvás


The review summarizes the level of current knowledge of impacts of vernalization and photoperiod on the induction and maintenance of frost tolerance (FrT) in wheat and barley. The phenomenon of vernalization is briefly described and the major vernalization (VRN) loci are characterised. Vernalization requirement and the three major growth habits of Triticeae (facultative, winter and spring) are defined on the basis of the two-locus VRN-2/VRN-1 epistatic model. Major photoperiodically regulated genes, which influence the transition to flowering, are characterised and their interactions with VRN genes are briefly discussed. The phenomenon of induction of FrT during the process of cold acclimation (CA) is described and the major cold-induced Cor/Lea genes are listed. Important regulatory mechanisms, i.e., CBF pathway, controlling the expression of Cor/Lea genes under cold, are discussed. The major loci affecting the development of FrT in Triticeae, the Fr loci, are characterised. In conclusion, current progress in this research field is summarized and new questions arising in the area are formulated.

Additional key words

cold acclimation Hordeum Triticum 



amino acid


abscisic acid


apetala 1 (gene)


cold acclimation


C-repeat binding factor (gene)


constans (gene)


cold-regulated/late embryogenesis abundant (genes)


dehydrin (gene)




frost-resistance locus(i)


frost tolerance




inducer of CBF expression 1 (gene)


long day


low temperature


lethal temperature when 50 % of the samples die


relative molecular mass


near isogenic line


protein isoelectric point


photoperiod locus(i)


pseudo-response regulator (gene)


quantitative trait locus(i)


reactive oxygen species


short day


sodium dodecyl sulfate polyacrylamide gel electrophoresis


transcription factor


vernalization (gene)


a dominant allele of VRN gene


a recessive allele of VRN gene


wheat cold-regulated (gene)


wheat cold-specific (gene)


wheat response-to-ABA (gene)


  1. Adam, H., Quellet, F., Kane, N.A., Agharbaoui, Z., Major, G., Tominaga, Y., Sarhan, F.: Overexpression of TaVRN1 in Arabidopsis promotes early flowering and alters development.-Plant Cell Physiol. 48: 1192–1206, 2007.PubMedCrossRefGoogle Scholar
  2. Allagulova, Ch.R., Gimalov, F.R., Shakirova, F.M., Vakhitov, V.A.: The plant dehydrins: structure and putative functions.-Biochemistry 68: 945–951, 2003.PubMedGoogle Scholar
  3. Badawi, M., Danyluk, J., Boucho, B., Houde, M., Sarhan, F.: The CBF gene family in hexaploid wheat and its relationship to the phylogenetic complexity of cereal CBFs.-Mol. Genet. Genomics 277: 533–554, 2007.PubMedCrossRefGoogle Scholar
  4. Bastow, R., Mylne, J.S., Lister, C., Lippman, Z., Martienssen, R.A., Dean, C.: Vernalization requires epigenetic silencing of FLC by histone methylation.-Nature 427: 164–167, 2004.PubMedCrossRefGoogle Scholar
  5. Beales, J., Turner, A., Griffiths, S., Snape, J.W., Laurie, D.A.: A Pseudo-Response Regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.).-Theor. appl. Genet. 115: 721–733, 2007.PubMedCrossRefGoogle Scholar
  6. Ben-Naim O., Eshed, R., Parnis A., Teper-Bamnolker, P., Shalit, A., Coupland, G., Samach, A., Lifschitz, E.: The CCAAT binding factor can mediate interactions between CONSTANS-like proteins and DNA.-Plant J. 46: 462–476, 2006.PubMedCrossRefGoogle Scholar
  7. Cattivelli, L., Baldi, P., Crosatti, C., Di Fonzo, N., Faccioli, P., Grossi, M., Mastrangelo, A.M., Pecchioni, N., Stanca, A.M.: Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae.-Plant mol. Biol. 48: 649–665, 2002.CrossRefGoogle Scholar
  8. Chauvin, L.-P., Houde, M., Fowler, D.B.: Nucleotide sequence of a new member of the freezing tolerance-associated protein family in wheat.-Plant Physiol. 105: 1017–1018, 1994.PubMedCrossRefGoogle Scholar
  9. Chauvin, L.-P., Houde, M., Sarhan, F.: A leaf-specific gene stimulated by light during wheat acclimation to low temperature.-Plant mol. Biol. 23: 255–265, 1993.PubMedCrossRefGoogle Scholar
  10. Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B.H., Hong, X.H., Agarwal, M., Zhu, J.K.: ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis.-Genes Dev. 17: 1043–1054, 2003.PubMedCrossRefGoogle Scholar
  11. Choi, D.W., Rodriguez, E.M., Close, T.J.: Barley Cbf3 gene identification, expression pattern, and map location.-Plant Physiol. 129: 1781–1787, 2002.PubMedCrossRefGoogle Scholar
  12. Choi, D.W., Zhu, B., Close, T.J.: The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv. Dicktoo.-Theor. appl. Genet. 98: 1234–1247, 1999.CrossRefGoogle Scholar
  13. Chouard, P.: Vernalization and its relations to dormancy.-Annu. Rev. Plant Physiol. 11: 191–238, 1960.CrossRefGoogle Scholar
  14. Close, T.J.: Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins.-Physiol. Plant. 97: 795–803, 1996.CrossRefGoogle Scholar
  15. Close, T.J.: Dehydrins: a commonalty in the response of plants to dehydration and low temperature.-Physiol. Plant. 100: 291–296, 1997.CrossRefGoogle Scholar
  16. Close, T.J., Fenton, R.D., Moonan, F.: A view of plant dehydrins using antibodies specific to the carboxy terminal peptide.-Plant mol. Biol. 23: 279–286, 1993.PubMedCrossRefGoogle Scholar
  17. Close, T.J., Meyer, N.C., Radik, J.: Nucleotide sequence of a gene encoding a 58.5-kilodalton barley dehydrin that lacks a serine tract.-Plant Gene Register. Plant Physiol. 107: 289–290, 1995.Google Scholar
  18. Cockram, J., Chiapparino, E., Taylor, S.A., Stamati, K., Donini, P., Laurie, D.A., O’Sullivan, D.M.: Haplotype analysis of vernalization loci in European barley germplasm reveals novel VRN-H1 alleles and a predominant winter VRN-H1/VRN-H2 multi-locus haplotype.-Theor. appl. Genet. 115: 993–1001, 2007a.PubMedCrossRefGoogle Scholar
  19. Cockram, J., Jones, H., Leigh, F.J., O’Sullivan, D., Powell, W., Laurie, D.A., Greenland, A.J.: Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity.-J. exp. Bot. 58: 1231–1244, 2007b.PubMedCrossRefGoogle Scholar
  20. Crosatti, C., Soncini, C., Stanca, A.M., Cattivelli, L.: The accumulation of a cold-regulated chloroplastic protein is light-dependent.-Planta 196: 458–463, 1995.PubMedCrossRefGoogle Scholar
  21. Dal Bosco, C., Busconi, M., Govoni, C., Baldi, P., Stanca, A.M., Crosatti, C., Bassi, R., Cattivelli, L.: Cor gene expression in barley mutants affected in chloroplast development and photosynthetic electron transport.-Plant Physiol. 131: 793–802, 2003.CrossRefGoogle Scholar
  22. Danyluk, J., Houde, M., Rassart, E., Sarhan, F.: Differential expression of a gene encoding an acidic dehydrin in chilling sensitive and freezing tolerant Gramineae species.-FEBS Lett. 344: 20–24, 1994.PubMedCrossRefGoogle Scholar
  23. Danyluk, J., Kane, N.A., Breton, G., Limin, A.E., Fowler, D.B., Sarhan, F.: TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals.-Plant Physiol. 132: 1849–1860, 2003.PubMedCrossRefGoogle Scholar
  24. Danyluk, J., Perron, A., Houde, M., Limin, A., Fowler, B., Benhamou, N., Sarhan, F.: Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat.-Plant Cell 10: 623–638, 1998.PubMedCrossRefGoogle Scholar
  25. Dubcovsky, J., Chen, C., Yan, L.: Molecular characterization of the allelic variation at the VRN-H2 vernalization locus in barley.-Mol. Breed. 15: 395–407, 2005.CrossRefGoogle Scholar
  26. Dubcovsky, J., Loukoianov, A., Fu, D., Valarik, M., Sanchez, A., Yan, L.: Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2.-Plant mol. Biol. 60: 469–480, 2006.PubMedCrossRefGoogle Scholar
  27. Dure, L.: A repeating 11-mer amino acid motif and plant desiccation.-Plant J. 3: 363–369, 1993.PubMedCrossRefGoogle Scholar
  28. Faure, S., Higgins, J., Turner, A., Laurie, D.A.: The flowering locus T-like gene family in barley (Hordeum vulgare).-Genetics 176: 599–609, 2007.PubMedCrossRefGoogle Scholar
  29. Fowler, D.B., Breton, G., Limin, A.E., Mahfoozi, S., Sarhan, F.: Photoperiod and temperature interactions regulate low-temperature-induced gene expression in barley.-Plant Physiol. 127: 1676–1681, 2001.PubMedCrossRefGoogle Scholar
  30. Fowler, D.B., Limin, A.E., Wang, S.Y., Ward, R.W.: Relationship between low-temperature tolerance and vernalization response in wheat and rye.-Can. J. Plant Sci. 76: 37–42, 1996.Google Scholar
  31. Francia, E., Rizza, F., Cattivelli, L., Stanca, A.M., Galiba, G., Tóth, B., Hayes, P.M., Skinner, J.S., Pecchioni, N.: Two loci on chromosome 5H determine low-temperature tolerance in a ‘Nure’ (winter) × ‘Tremois’ (spring) barley map.-Theor. appl. Genet. 108: 670–680, 2004.PubMedCrossRefGoogle Scholar
  32. Fu, D., Dunbar, M., Dubcovsky, J.: Wheat VIN3-like PHD finger genes are up-regulated by vernalization.-Mol. Genet. Genomics 277: 301–313, 2007.PubMedCrossRefGoogle Scholar
  33. Fu, D., Szücs, P., Yan, L., Helguera, M., Skinner, J.S., Von Zitzewitz, J., Hayes, P.M., Dubcovsky, J.: Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat.-Mol. Genet. Genomics 273: 54–65, 2005.PubMedCrossRefGoogle Scholar
  34. Galiba, G., Quarrie, S.A., Sutka, J., Morgounov, A., Snape, J.W.: RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat.-Theor. appl. Genet. 90: 1174–1179, 1995.CrossRefGoogle Scholar
  35. González-Schain, N.D., Suárez-López, P.: CONSTANS delays flowering and affects tuber yield in potato.-Biol. Plant. 52: 251–258, 2008.CrossRefGoogle Scholar
  36. Griffiths, S., Dunford, R.P., Coupland, G., Laurie, D.A.: The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis.-Plant Physiol. 131: 1855–1867, 2003.PubMedCrossRefGoogle Scholar
  37. Guo, W.W., Ward, R.W., Thomashow, M.F.: Characterization of a cold-regulated wheat gene related to Arabidopsis Cor47.-Plant Physiol. 100: 915–922, 1992.PubMedGoogle Scholar
  38. Guy, C.L.: Cold acclimation and freezing stress tolerance: role of protein metabolism.-Annu. Rev. Plant Physiol. Plant mol. Biol. 41: 187–223, 1990.Google Scholar
  39. Houde, M., Daniel, C., Lachapelle, M., Allard, F., Laliberté, S., Sarhan, F.: Immunolocalization of freezing-tolerance-associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues.-Plant J. 8: 583–593, 1995.PubMedCrossRefGoogle Scholar
  40. Houde, M., Danyluk, J., Laliberté, J.-F., Rassart, E., Dhindsa, R.S., Sarhan, F.: Cloning, characterization, and expression of a cDNA encoding a 50 kilodalton protein specifically induced by cold acclimation in wheat.-Plant Physiol. 99: 1381–1387, 1992a.PubMedCrossRefGoogle Scholar
  41. Houde, M., Dhindsa, R.S., Sarhan, F.: A molecular marker to select for freezing tolerance in Gramineae.-Mol. Gen. Genet. 234: 43–48, 1992b.PubMedGoogle Scholar
  42. Ingram, J., Bartels, D.: The molecular basis of dehydration tolerance in plants.-Annu. Rev. Plant Physiol. Plant mol. Biol. 47: 377–403, 1996.PubMedCrossRefGoogle Scholar
  43. Ishibashi, M., Kobayashi, F., Nakamura, J., Murai, K., Takumi, S.: Variation of freezing tolerance, Cor/Lea gene expression and vernalization requirement in Japanese common wheat.-Plant Breed. 126: 464–469, 2007.CrossRefGoogle Scholar
  44. Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O., Thomashow, M.F.: Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance.-Science 280: 104–106, 1998.PubMedCrossRefGoogle Scholar
  45. Kane, N.A., Agharbaoui, Z., Diallo, A.O., Adam, H., Tominaga, Y., Quellet, F., Sarhan, F.: TaVRT2 represses transcription of the wheat vernalization gene TaVRN1.-Plant J. 51: 670–680, 2007.PubMedCrossRefGoogle Scholar
  46. Kane, N.A., Danyluk, J., Tardif, G., Quellet, F., Laliberté, J.F., Limin, A.E., Fowler, D.B., Sarhan, F.: TaVRT-2, a member of the St-MADS-11 clade of flowering repressors, is regulated by vernalization and photoperiod in wheat.-Plant Physiol. 138: 2354–2363, 2005.PubMedCrossRefGoogle Scholar
  47. Karsai, I., Mészáros, K., Hayes, P.M., Bedö, Z.: Effects of loci on chromosomes 2 (2H) and 7 (5H) on developmental patterns in barley (Hordeum vulgare L.) under different photoperiod regimes.-Theor. appl. Genet. 94: 612–618, 1997.CrossRefGoogle Scholar
  48. Karsai, I., Szücs, P., Mészáros, K., Filichkina, T., Hayes, P.M., Skinner, J.S., Láng, L., Bedö, Z.: The Vrn-H2 locus is a major determinant of flowering time in a facultative × winter growth habit barley (Hordeum vulgare L.) mapping population.-Theor. appl. Genet. 110: 1458–1466, 2005.PubMedCrossRefGoogle Scholar
  49. Kobayashi, F., Takumi, S., Kume, S., Ishibashi, M., Ohno, R., Murai, K., Nakamura, C.: Regulation by Vrn-1/Fr-1 chromosomal intervals of CBF-mediated Cor/Lea gene expression and freezing tolerance in common wheat.-J. exp. Bot. 56: 887–895, 2005.PubMedCrossRefGoogle Scholar
  50. Kobayashi, F., Takumi, S., Nakata, M., Ohno, R., Nakamura, T., Nakamura, C.: Comparative study of the expression profiles of the Cor/Lea gene family in two wheat cultivars with contrasting levels of freezing tolerance.-Physiol. Plant. 120: 585–594, 2004.PubMedCrossRefGoogle Scholar
  51. Kosová, K., Holková, L., Prášil, I.T., Prášilová, P., Bradáčová, M., Vítámvás, P., Čapková, V.: The expression of dehydrin 5 during the development of frost tolerance in barley (Hordeum vulgare).-J. Plant Physiol. 2008, DOI: 10.1016/j.jplph.2007.10.009Google Scholar
  52. Kosová, K., Vítámvás, P., Prášil, I.T.: The role of dehydrins in plant response to cold.-Biol. Plant. 51: 601–617, 2007.CrossRefGoogle Scholar
  53. Košner, J., Pánková, K.: The detection of allelic variants at the recessive vrn loci of winter wheat.-Euphytica 101: 9–16, 1998.CrossRefGoogle Scholar
  54. Kóti, K., Karsai, I., Szücs, P., Horváth, Cs., Mészáros, K., Kiss, G.B., Bedö, Z., Hayes, P.M.: Validation of the two-gene epistatic model for vernalization response in a winter × spring barley cross.-Euphytica 152: 17–24, 2006.CrossRefGoogle Scholar
  55. Krekule, J.: Vernalization in wheat.-In: Atherton, J.G. (ed.): Manipulation of flowering. Pp. 159–169. Buttersworths London-Boston-Durban-Singapure-Sydney-Toronto-Wellington 1987.Google Scholar
  56. Kume, S., Kobayashi, F., Ishibashi, M., Ohno, R., Nakamura, C., Takumi, S.: Differential and coordinated expression of Cbf and Cor/Lea genes during long-term cold acclimation in two wheat cultivars showing distinct levels of freezing tolerance.-Genes genet. Syst. 80: 185–197, 2005.PubMedCrossRefGoogle Scholar
  57. Laurie, D.A.: Comparative genetics of flowering time.-Plant mol. Biol. 35: 167–177, 1997.PubMedCrossRefGoogle Scholar
  58. Laurie, D.A., Griffiths, S., Dunford, R.P., Christodoulou, V., Taylor, S.A., Cockram, J., Beales, J., Turner, A.: Comparative genetic approaches to the identification of flowering time genes in temperate cereals.-Field Crops Res. 90: 87–99, 2004.CrossRefGoogle Scholar
  59. Laurie, D.A., Pratchett, N., Bezant, J.H., Snape, J.W.: Genetic analysis of a photoperiod response gene on the short arm of chromosome 2(2H) of barley (Hordeum vulgare L.).-Heredity 72: 619–627, 1994.CrossRefGoogle Scholar
  60. Laurie, D.A., Pratchett, N., Bezant, J.H., Snape, J.W.: RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter × spring barley (Hordeum vulgare L.) cross.-Genome 38: 575–585, 1995.PubMedGoogle Scholar
  61. Limin, A.E., Corey, A., Hayes, P., Fowler, D.B.: Low-temperature acclimation of barley cultivars used as parents in mapping populations: response to photoperiod, vernalization and phenological development.-Planta 226: 139–146, 2007.PubMedCrossRefGoogle Scholar
  62. Loukoianov, A., Yan, L., Blechl, A., Sanchez, A., Dubcovsky, J.: Regulation of VRN-1 vernalization genes in normal and transgenic polyploid wheat.-Plant Physiol. 138: 2364–2373, 2005.PubMedCrossRefGoogle Scholar
  63. McIntosh, R.A., Devos, K.M., Dubcovsky, J., Rogers, W.J.: Catalogue of gene symbols for wheat: 2004 supplement. Wheat Information Service.
  64. Miller, A.K., Galiba, G., Dubcovsky, J.: A cluster of 11 CBF transcription factors is located at the frost tolerance locus Fr-A m 2 in Triticum monococcum.-Mol. Genet. Genomics 275: 193–203, 2006.PubMedCrossRefGoogle Scholar
  65. Monroy, A.F., Dryanova, A., Malette, B., Oren, D.H., Farajalla, M.R., Liu, W., Danyluk, J., Ubayasena, L.W.C., Kane, K., Scoles, G.J., Sarhan, F., Gulick, P.J.: Regulatory gene candidates and gene expression analysis of cold acclimation in winter and spring wheat.-Plant mol. Biol. 64: 409–423, 2007.PubMedCrossRefGoogle Scholar
  66. Murai, K., Miyamae, M., Kato, H., Takumi, S., Ogihara, Y.: WAP1, a wheat APETALA1 homolog, plays a central role in the phase transition from vegetative to reproductive growth.-Plant Cell Physiol. 44: 1255–1265, 2003.PubMedCrossRefGoogle Scholar
  67. Nakamichi, N., Kita, M., Ito, S., Sato, E., Yamashino, T., Mizuno, T.: The Arabidopsis pseudo-response regulators, PRR5 and PRR7, coordinately play essential roles for circadian clock function.-Plant Cell Physiol. 46: 609–619, 2005.PubMedCrossRefGoogle Scholar
  68. NDong, C., Danyluk, J., Wilson, K.E., Pocock, T., Huner, N.P.A., Sarhan, F.: Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins. Molecular characterization and functional analyses.-Plant Physiol. 129: 1368–1381, 2002.PubMedCrossRefGoogle Scholar
  69. Ohno, R., Takumi, S., Nakamura, C.: Kinetics of transcript and protein accumulation of a low-molecular-weight wheat LEA D-11 dehydrin in response to low temperature.-J. Plant Physiol. 160: 193–200, 2003.PubMedCrossRefGoogle Scholar
  70. Prášil, I.T., Prášilová, P., Pánková, K.: Relationships among vernalization, shoot apex development and frost tolerance in wheat.-Ann. Bot. 94: 413–418, 2004.PubMedCrossRefGoogle Scholar
  71. Prášil, I.T., Prášilová, P., Pánková, K.: The relationship between vernalization requirement and frost tolerance in substitution lines of wheat.-Biol. Plant. 49: 195–200, 2005.CrossRefGoogle Scholar
  72. Preston, J.C., Kellogg, E.A.: Conservation and divergence of APETALA1/FRUITFULL-like gene function in grasses: evidence from gene expression analyses.-Plant J. 52: 69–81, 2007.PubMedCrossRefGoogle Scholar
  73. Putterill, J., Robson, F., Lee, K., Simon, R., Coupland, G.: The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors.-Cell 80: 847–857, 1995.PubMedCrossRefGoogle Scholar
  74. Quellet, F., Houde, M., Sarhan, F.: Purification, characterization and cDNA cloning of the 200 kDa protein induced by cold acclimation in wheat.-Plant Cell Physiol. 34: 59–65, 1993.Google Scholar
  75. Reinheimer, J.L., Barr, A.R., Eglinton, J.K.: QTL mapping of chromosomal regions conferring reproductive frost tolerance in barley (Hordeum vulgare L.).-Theor. appl. Genet. 109: 1267–1274, 2004.PubMedCrossRefGoogle Scholar
  76. Robson, F., Costa, M.M.R., Hepworth, S.R., Vizir, I., Pineiro, M., Reeves, P.H., Putterill, J., Coupland, G.: Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants.-Plant J. 28: 619–631, 2001.PubMedCrossRefGoogle Scholar
  77. Sakai, A., Larcher, W.: Frost Survival of Plants. Responses and Adaptation to Freezing Stress.-Springer-Verlag, Berlin-Heidelberg-New York-London-Paris-Tokyo 1985.Google Scholar
  78. Sarhan, F., Ouellet, F., Vazquez-Tello, A.: The wheat wcs120 gene family. A useful model to understand the molecular genetics of freezing tolerance in cereals.-Physiol. Plant. 101: 439–445, 1997.CrossRefGoogle Scholar
  79. Schmitz, J., Franzen, R., Ngyuen, T.H., Garcia-Maroto, F., Pozzi, C., Salamini, F., Rohde, W.: Cloning, mapping and expression analysis of barley MADS-box genes.-Plant mol. Biol. 42: 899–913, 2000.PubMedCrossRefGoogle Scholar
  80. Shimamura, C., Ohno, R., Nakamura, C., Takumi, S.: Improvement of freezing tolerance in tobacco plants expressing a cold-responsive and chloroplast-targeting protein WCOR15 of wheat.-J. Plant Physiol. 163: 213–219, 2006.PubMedCrossRefGoogle Scholar
  81. Shitsukawa, N., Ikari, C., Shimada, S., Kitagawa, S., Sakamoto, K., Saito, H., Ryuto, H., Fukunishi, N., Abe, T., Takumi, S., Nasuda, S., Murai, K.: The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene.-Genes genet. Syst. 82: 167–170, 2007.PubMedCrossRefGoogle Scholar
  82. Skinner, J.S., Szücs, P., Von Zitzewitz, J., Marquez-Cedillo, L., Filichkin, T., Stockinger, E.J., Thomashow, M.F., Chen, T.H.H., Hayes, P.M.: Mapping of barley homologs to genes that regulate low temperature tolerance in Arabidopsis.-Theor. appl. Genet. 112: 832–842, 2006.PubMedCrossRefGoogle Scholar
  83. Skinner, J.S., Von Zitzewitz, J., Szücs, P., Marquez-Cedillo, L., Filichkin, T., Amundsen, K., Stockinger, E.J., Thomashow, M.F., Chen, T.H.H., Hayes, P.M.: Structural, functional, and phylogenetic characterization of a large CBF gene family in barley.-Plant mol. Biol. 59: 533–551, 2005.PubMedCrossRefGoogle Scholar
  84. Snape, J.W., Semikhodskii, A., Sarma, R., Quarrie, S.A., Galiba, G., Sutka, J.: Mapping frost resistance loci in wheat and comparative mapping with other cereals.-Acta agron. hung. 45: 265–270, 1997.Google Scholar
  85. Stockinger, E.J., Skinner, J.S., Gardner, K.G., Francia, E., Pecchioni, N.: Expression levels of barley Cbf genes at the Frost resistance-H2 locus are dependent upon alleles at Fr-H1 and Fr-H2.-Plant J. 51: 308–321, 2007.PubMedCrossRefGoogle Scholar
  86. Sung, S., Amasino, R.M.: Vernalization and epigenetics: how plants remember winter.-Curr. Opin. Plant Biol. 7: 4–10, 2004.PubMedCrossRefGoogle Scholar
  87. Sung, S., Amasino, R.M.: Remembering winter: toward a molecular understanding of vernalization.-Annu. Rev. Plant Biol. 56: 491–508, 2005.PubMedCrossRefGoogle Scholar
  88. Sutka, J., Galiba, G., Vágújfalvi, A., Gill, B.S., Snape, J.W.: Physical mapping of the Vrn-A1 and Fr1 genes on chromosome 5A of wheat using deletion lines.-Theor. appl. Genet. 99: 199–202, 1999.CrossRefGoogle Scholar
  89. Szücs, P., Karsai, I., Von Zitzewitz, J., Mészáros, K., Cooper, L.L.D., Gu, Y.Q., Chen, T.H.H., Hayes, P.M., Skinner, J.S.: Positional relationships between photoperiod response QTL and photoreceptor and vernalization genes in barley.-Theor. appl. Genet. 112: 1277–1285, 2006.PubMedCrossRefGoogle Scholar
  90. Szücs, P., Skinner, J.S., Karsai, I., Cuesta-Marcos, A., Haggard, K.G., Corey, A.E., Chen, T.H.H., Hayes, P.M.: Validation of the VRN-H2/VRN-H1 epistatic model in barley reveals that intron length variation in VRN-H1 may account for a continuum of vernalization sensitivity.-Mol. Genet. Genomics 277: 249–261, 2007.PubMedCrossRefGoogle Scholar
  91. Takumi, S., Koike, A., Nakata, M., Kume, S., Ohno, R., Nakamura, C.: Cold-specific and light-stimulated expression of a wheat (Triticum aestivum L.) Cor gene Wcor15 encoding a chloroplast-targeted protein.-J. exp. Bot. 54: 2265–2274, 2003.PubMedCrossRefGoogle Scholar
  92. Takumi, S., Shimamura, C., Kobayashi, F.: Increased freezing tolerance through up-regulation of downstream genes via the wheat CBF gene in transgenic tobacco.-Plant Physiol. Biochem. 46: 205–211, 2008.PubMedCrossRefGoogle Scholar
  93. Thomashow, M.F.: Plant cold acclimation: freezing tolerance genes and regulatory mechanisms.-Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 571–599, 1999.PubMedCrossRefGoogle Scholar
  94. Tóth, B., Galiba, G., Fehér, E., Sutka, J., Snape, J.W.: Mapping genes affecting flowering time and frost resistance on chromosome 5B of wheat.-Theor. appl. Genet. 107: 509–514, 2003.PubMedCrossRefGoogle Scholar
  95. Trevaskis, B., Hemming, M.N., Dennis, E.S., Peacock, W.J.: The molecular basis of vernlization-induced flowering in cereals.-Trends Plant Sci. 12: 352–357, 2007.PubMedCrossRefGoogle Scholar
  96. Trevaskis, B., Hemming, M.N., Peacock, W.J., Dennis, E.S.: HvVRN2 responds to daylength, whereas HvVRN1 is regulated by vernalization and developmental status.-Plant Physiol. 140: 1397–1405, 2006.PubMedCrossRefGoogle Scholar
  97. Tsuda, K., Tsvetanov, S., Takumi, S., Mori, N., Atanassov, A., Nakamura, C.: New members of a cold-responsive group-3 Lea/Rab-related Cor gene family from common wheat (Triticum aestivum L.).-Genes genet. Syst. 75: 179–188, 2000.PubMedCrossRefGoogle Scholar
  98. Tsvetanov, S., Ohno, R., Tsuda, K., Takumi, S., Mori, N., Atanassov, A., Nakamura, C.: A cold-responsive wheat (Triticum aestivum L.) gene wcor14 identified in a winter-hardy cultivar ‘Mironovska 808’.-Genes genet. Syst. 75: 49–57, 2000.PubMedCrossRefGoogle Scholar
  99. Turner, A., Beales, J., Faure, S., Dunford, R.P., Laurie, D.A.: The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley.-Science 310: 1031–1034, 2005.PubMedCrossRefGoogle Scholar
  100. Vágújfalvi, A., Aprile, A., Miller, A., Dubcovsky, J., Delugu, G., Galiba, G., Cattivelli, L.: The expression of several Cbf genes at the Fr-A2 locus is linked to frost resistance in wheat.-Mol. Genet. Genomics 274: 506–514, 2005.PubMedCrossRefGoogle Scholar
  101. Vágújfalvi, A., Crosatti, C., Galiba, G., Dubcovsky, J., Cattivelli, L.: Two loci on wheat chromosome 5A regulate the differential cold-dependent expression of the cor14b gene in frost-tolerant and frost-sensitive genotypes.-Mol. gen. Genet. 263: 194–200, 2000.PubMedCrossRefGoogle Scholar
  102. Vágújfalvi, A., Galiba, G., Cattivelli, L., Dubcovsky, J.: The cold-regulated transcriptional activator Cbf3 is linked to the frost-tolerance locus Fr-A2 on wheat chromosome 5A.-Mol. Genet. Genomics 269: 60–67, 2003.PubMedGoogle Scholar
  103. Vítámvás, P., Saalbach, G., Prášil, I.T., Čapková, V., Opatrná, J., Jahoor, A.: WCS120 protein family and proteins soluble upon boiling in cold-acclimated winter wheat.-J. Plant Physiol. 164: 1197–1207, 2007.PubMedCrossRefGoogle Scholar
  104. Vogel, J.T., Zarka, D.G., Van Buskirk, H.A., Fowler, S.G., Thomashow, M.F.: Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis.-Plant J. 41: 195–211, 2005.PubMedCrossRefGoogle Scholar
  105. Von Zitzewitz, J., Szücs, P., Dubcovsky, J., Yan, L., Francia, E., Pecchioni, N., Casas, A., Chen, T.H.H., Hayes, P.M., Skinner, J.S.: Molecular and structural characterization of barley vernalization genes.-Plant mol. Biol. 59: 449–467, 2005.CrossRefGoogle Scholar
  106. Xue, G.P.: An AP2 domain transcription factor HvCBF1 activates expression of cold-responsive genes in barley through interaction with a (G/a)(C/t)CGAC motif.-Biochim. biophys. Acta 1577: 63–72, 2002.PubMedGoogle Scholar
  107. Xue, G.P.: The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature.-Plant J. 33: 373–383, 2003.PubMedCrossRefGoogle Scholar
  108. Yamaguchi-Shinozaki, K., Shinozaki, K.: Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters.-Trends Plant Sci. 10: 88–94, 2005.PubMedCrossRefGoogle Scholar
  109. Yan, L., Fu, D., Li, C., Blechl, A., Tranquilli, G., Bonafede, M., Sanchez, A., Valarik, M., Yasuda, S., Dubcovsky, J.: The wheat and barley vernalization gene VRN3 is an orthologue of FT.-Proc. nat. Acad. Sci. USA 103: 19581–19586, 2006.PubMedCrossRefGoogle Scholar
  110. Yan, L., Helguera, M., Kato, K., Fukuyama, S., Sherman, J., Dubcovsky, J.: Allelic variation at the VRN-1 promoter region in polyploid wheat.-Theor. appl. Genet. 109: 1677–1686, 2004a.PubMedCrossRefGoogle Scholar
  111. Yan, L., Loukoianov, A., Blechl, A., Tranquilli, G., Ramakrishna, W., SanMiguel, P., Bennetzen, J.L., Echenique, V., Dubcovsky, J.: The wheat VRN2 gene is a flowering repressor down-regulated by vernalization.-Science 303: 1640–1644, 2004b.PubMedCrossRefGoogle Scholar
  112. Yan, L., Loukoianov, A., Tranquilli, G., Helguera, M., Fahima, T., Dubcovsky, J.: Positional cloning of the wheat vernalization gene VRN1.-Proc. nat. Acad. Sci. USA 100: 6263–6268, 2003.PubMedCrossRefGoogle Scholar
  113. Zarka, D.G., Vogel, J.T., Cook, D., Thomashow, M.F.: Cold induction of Arabidopsis CBF genes involves multiple ICE1 (inducer of CBF expression 1) promoter elements and a cold-regulatory circuit that is desenzitized by low temperature.-Plant Physiol. 133: 910–918, 2003.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Genetics and Plant BreedingCrop Research InstitutePrague 6-RuzyněCzech Republic

Personalised recommendations