Biologia Plantarum

, Volume 52, Issue 3, pp 445–452 | Cite as

Localization of BAC clones on mitotic chromosomes of Musa acuminata using fluorescence in situ hybridization

Original Papers


A bacterial artificial chromosome (BAC) library of banana (Musa acuminata) was used to select BAC clones that carry low amounts of repetitive DNA sequences and could be suitable as probes for fluorescence in situ hybridization (FISH) on mitotic metaphase chromosomes. Out of eighty randomly selected BAC clones, only one clone gave a single-locus signal on chromosomes of M. acuminata cv. Calcutta 4. The clone localized on a chromosome pair that carries a cluster of 5S rRNA genes. The remaining BAC clones gave dispersed FISH signals throughout the genome and/or failed to produce any signal. In order to avoid the excessive hybridization of repetitive DNA sequences, we subcloned nineteen BAC clones and selected their ‘low-copy’ subclones. Out of them, one subclone gave specific signal in secondary constriction on one chromosome pair; three subclones were localized into centromeric and peri-centromeric regions of all chromosomes. Other subclones were either localized throughout the banana genome or their use did not result in visible FISH signals. The nucleotide sequence analysis revealed that subclones, which localized on different regions of all chromosomes, contained short fragments of various repetitive DNA sequences. The chromosome-specific BAC clone identified in this work increases the number of useful cytogenetic markers for Musa.

Additional key words

cytogenetic mapping chromosome structure repetitive DNA ribosomal DNA subcloning 



bacterial artificial chromosome


fluorescence in situ hybridization




fluorescein isothiocyanate


pulsed field gel electrophoresis


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aert, R., Sagi, L., Volckaert, G.: Gene content and density in banana (Musa acuminata) as revealed by genomic sequencing of BAC clones.-Theor. appl. Genet. 109: 129–139, 2004.PubMedCrossRefGoogle Scholar
  2. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.-Nucl. Acids Res. 25: 3389–3402, 1997.PubMedCrossRefGoogle Scholar
  3. Appels, R., Gerlach, W.L., Dennis, E.S., Swift, H., Peacock, W.J.: Molecular and chromosomal organization of DNA sequences coding for the ribosomal RNAs in cereals.-Chromosoma 78: 293–311, 1980.CrossRefGoogle Scholar
  4. Balint-Kurti, P.J., Clendennen, S.K., Doleželová, M., Valárik, M., Doležel, J., Beetham, P.R., May, G.D.: Identification and chromosomal localization of the monkey retrotransposon in Musa sp.-Mol. gen. Genet. 263: 908–915, 2000.PubMedCrossRefGoogle Scholar
  5. Bartoš, J., Alkhimova, O., Doleželová, M., De Langhe, E., Doležel, J.: Nuclear genome size and genomic distribution of ribosomal DNA in Musa and Ensete (Musaceae): taxonomic implications.-Cytogenet. Genome Res. 109: 50–57, 2005.PubMedCrossRefGoogle Scholar
  6. Doležel, J., Doleželová, M., Novák, F.J.: Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminata and M. balbisiana).-Biol. Plant. 36: 351–357, 1994.CrossRefGoogle Scholar
  7. Doleželová, M., Valárik, M., Swennen, R., Horry, J.P., Doležel, J.: Physical mapping of the 18S–25S and 5S ribosomal RNA genes in diploid bananas.-Biol. Plant. 41: 497–505, 1998.CrossRefGoogle Scholar
  8. Ellis, T.N., Lee, D., Thomas, C.M., Simpson, P.R., Cleary, W.G., Newman, M.A., Burcham, K.W.G.: 5S rRNA genes in Pisum: Sequence, long range and chromosomal organization.-Mol. gen. Genet. 214: 333–342, 1988.PubMedCrossRefGoogle Scholar
  9. Hanson, R.E., Zwick, M.S., Choi, S.D., Islam-Faridi, M.N., McKnight, T.D., Wing, R.A., Price, H.J., Stelly, D.M.: Fluorescent in situ hybridization of a bacterial artificial chromosome.-Genome 38: 646–651, 1995.PubMedCrossRefGoogle Scholar
  10. Hasterok, R., Marasek, A., Donnison, I.S., Armstead, I., Thomas, A., King, I.P., Wolny, E., Idziak, D., Draper, J., Jenkins, G.: Alignment of the genomes of Brachypodium distachyon and temperate cereals and grasses using bacterial artificial chromosome landing with fluorescence in situ hybridization.-Genetics 173: 349–362, 2006.PubMedCrossRefGoogle Scholar
  11. Janda, J., Šafář, J., Kubaláková, M., Bartoš, J., Kovářová, P., Suchánková, P., Pateyron, S., Číhalíková, J., Sourdille, P., Šimková, H., Faivre-Rampant, P., Hřibová, E., Bernard, M., Lukaszewski, A., Doležel, J., Chalhoub, B.: Advanced resources for plant genomics: a BAC library specific for the short arm of wheat chromosome 1B.-Plant J. 47: 977–986, 2006.PubMedCrossRefGoogle Scholar
  12. Jiang, J.M., Gill, B.S., Wang, G.L., Ronald, P.C., Ward, D.C.: Metaphase and interphase fluorescence in-situ hybridization mapping of the rice genome with bacterial artificial chromosomes.-Proc. nat. Acad. Sci. USA 92: 4487–4491, 1995.PubMedCrossRefGoogle Scholar
  13. Kim, J.-S., Childs, K.L., Islam-Faridi, N., Menz, M.A., Klein, R.R., Klein, P.E., Price, H.J., Mullet, J.E., Stelly, D.M.: Integrated karyotyping of sorghum by in situ hybridization of landed BACs.-Genome 45: 402–412, 2002.PubMedCrossRefGoogle Scholar
  14. Lamb, J.C., Danilova, T., Bauer, M.J., Meyer, J.M., Holland, J.J., Jensen, M.D., Birchler, J.A.: Single-gene detection and karyotyping using small-target fluorescence in situ hybridization on maize somatic chromosomes.-Genetics 175: 1047–1058, 2007.PubMedCrossRefGoogle Scholar
  15. Lapitan, N.L.V., Brown, S.E., Kennard, W., Stephens, J.L., Knudson, D.L.: FISH physical mapping with barley BAC clones.-Plant J. 11: 149–156, 1997.CrossRefGoogle Scholar
  16. Lehfer, H., Bush, W., Martin, R., Herrman, R.G.: Localization of the B-hordein locus on barley chromosomes using fluorescence in situ hybridization.-Chromosoma 102: 428–432, 1993.CrossRefGoogle Scholar
  17. Lengerová, M., Kejnovsky, E., Hobza, R., Macas, J., Grant, S.R., Vyskot, B.: Multicolor FISH mapping of the dioecious model plant, Silene latifolia.-Theor. appl. Genet. 108: 1193–1199, 2004.PubMedCrossRefGoogle Scholar
  18. Long, E.O., Dawid, I.B.: Repeated genes in eukaryotes.-Annu. Rev. Biochem. 49: 727–764, 1980.PubMedCrossRefGoogle Scholar
  19. Lysák, M.A., Fransz, P.F., Ali, H.B.M., Schubert, I.: Chromosome painting in Arabidopsis thaliana.-Plant J 28: 689–697, 2001.PubMedCrossRefGoogle Scholar
  20. Mokroš, P., Vrbský, J., Široký, J.: Identification of chromosomal fusion sites in Arabidopsis mutants using sequential bicolour BAC-FISH.-Genome 49: 1036–1042, 2006.PubMedCrossRefGoogle Scholar
  21. Navrátilová, A., Neumann, P., Macas, J.: Karyotype analysis of four Vicia species using in situ hybridization with repetitive sequences.-Ann. Bot. 91: 921–926, 2003.PubMedCrossRefGoogle Scholar
  22. Ndowora, T., Dahal, G., LaFleur, D., Harper, G., Hull, R., Olszewski, N.E., Lockhart, B.: Evidence that badnavirus infection in Musa can originate from integrated pararetroviral sequences.-Virology 255: 214–220, 1999.PubMedCrossRefGoogle Scholar
  23. Ortiz-Vazquez, E., Kaemmer, D., Zhang, H.B., Muth, J., Rodriguez-Mendiola, M., Arias-Castro, C., James, A.: Construction and characterization of a plant transformation-competent BIBAC library of the black Sigatoka-resistant banana Musa acuminata cv. Tuu Gia (AA).-Theor. appl. Genet. 110: 706–713, 2005.PubMedCrossRefGoogle Scholar
  24. Osuji, J.O., Crouch, J., Harrison, G., Heslop-Harrison, J.S.: Molecular cytogenetics of Musa species, cultivars and hybrids: location of 18S-5.8S-25S and 5S rDNA and telomere-like sequences.-Ann. Bot. 82: 243–248, 1998.CrossRefGoogle Scholar
  25. Pedersen, C., Rasmussen, S.K., Linde-Laursen, I.: Genome and chromosome identification in cultivated barley and related species of the Triticeae (Poaceae) by in situ hybridization with the GAA-satellite sequence.-Genome 39: 93–104, 1996.PubMedCrossRefGoogle Scholar
  26. Šafář, J., Noa-Carrazana, J.C., Vrána, J., Bartoš, J., Alkhimova, O., Sabau, X., Šimková, H., Lheureux, F., Caruana, M.L., Doležel, J., Piffanelli, P.: Creation of a BAC resource to study the structure and evolution of the banana (Musa balbisiana) genome.-Genome 47: 1182–1191, 2004.PubMedCrossRefGoogle Scholar
  27. Sambrook, J., Fritsch, E., Maniatis, T.: Molecular Cloning: a Laboratory Manual. 2nd Edition.-Cold Spring Harbor Press, Cold Spring Harbor 1989.Google Scholar
  28. Simmonds, N.W., Weatherup, S.T.C.: Numerical taxonomy of the wild bananas (Musa).-New Phytol. 115: 567–571, 1990.CrossRefGoogle Scholar
  29. Song, J., Dong, F., Jiang, J.: Construction of a bacterial artificial chromosome (BAC) library for potato molecular cytogenetics research.-Genome 43: 199–204, 2000.PubMedCrossRefGoogle Scholar
  30. Sonnhammer, E.L.L., Durbin, R.: A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis.-Gene 167: GC1–10, 1995.PubMedCrossRefGoogle Scholar
  31. Staden, R., Beal, K.F., Bonfield, J.K.: The Staden package, 1998.-Methods mol. Biol. 132: 115–130, 2000.PubMedGoogle Scholar
  32. Tsuimoto, H., Mukai, Y., Akagawa, K., Nagaki, K., Fujigaki, J., Yamamoto, M., Sasakuma, T.: Identification of individual barley chromosomes based on repetitive sequences: Conservative distribution of Afa-family repetitive sequences on the chromosomes of barley and wheat.-Gene Genet. Syst. 72: 3003–309, 1997.Google Scholar
  33. Valárik, M., Bartoš, J., Kovářová, P., Kubaláková, M., De Jong, J.H., Doležel, J.: High-resolution FISH on super-stretched flow-sorted plant chromosomes.-Plant J. 37: 940–950, 2004.PubMedCrossRefGoogle Scholar
  34. Valárik, M., Šimková, H., Hřibová, E., Šafář, J., Doleželová, M., Doležel, J.: Isolation, characterization and chromosome localization of repetitive DNA sequences in bananas (Musa ssp.).-Chromosome Res 10: 89–100, 2002.PubMedCrossRefGoogle Scholar
  35. Vilarinhos, A., Carrel, F., Rodier, M., Hippolyte, I., Benabdelmouna, A., Triaire, D., Bakry, F., Courtois, B., D’Hont, A.: Characterization of translocations in banana by FISH of BAC clones anchored to a genetic map.-In: Abstracts of the International Conference “Plant and Animal Genome XIV”. P. 8. Sherago International, San Diego 2006.Google Scholar
  36. Vilarinhos, A.D., Piffanelli, P., Lagoda, P., Thibivilliers, S., Sabau, X., Carreel, F., D’Hont, A.: Construction and characterization of a bacterial artificial chromosome library of banana (Musa acuminata Colla).-Theor. appl. Genet. 106: 1102–1106, 2003.PubMedGoogle Scholar
  37. Yuan, Y., Sanmiguel, P.J., Bennetzen, J.L.: High-Cot sequence analysis of the maize genome.-Plant J. 34: 249–255, 2003.PubMedCrossRefGoogle Scholar
  38. Zhang, P., Li, W.L., Fellers, J., Friebe, B., Gill, B.S.: BAC-FISH in wheat identifies chromosome landmarks consisting of different types of transposable elements.-Chromosoma 112: 288–299, 2004.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Laboratory of Molecular Cytogenetics and CytometryInstitute of Experimental BotanyOlomoucCzech Republic
  2. 2.Department of Cell Biology and GeneticsPalacký UniversityOlomoucCzech Republic

Personalised recommendations