Biologia Plantarum

, 52:423 | Cite as

Production of recombinant human lactoferrin from transgenic plants

Review

Abstract

Molecular farming provides a powerful tool for low cost production of recombinant proteins with pharmaceutical value. The use of transgenic plants has been increasingly tested as alternative system for obtaining biologically active human lactoferrin in plants. Precise selection of plant species, transformation techniques and expression cassettes, in addition to conduction of detailed glycosylation and immunogenicity studies, serves as basis of obtaining safe recombinant human lactoferrin in high concentrations for the use of pharmacy. On the other hand, expression of antimicrobial protein lactoferrin in plants is a promising opportunity for crop quality improvement by increasing plant disease resistance.

Additional keywords

gene expression molecular farming plant-produced pharmaceutically important substances 

Abbreviations

Lf

lactoferrin

References

  1. Anzai, H., Takaiwa, F., Katsumata, K.: Production of human lactoferrin in transgenic plants.-In: Shimazaki, K., Tsuda, H., Tomita, M., Kuwata, T., Perraudin, J.-P. (ed.): Lactoferrin: Structure, Function and Applications. Pp. 265–271. Elsevier, Amsterdam 2000.Google Scholar
  2. Arakawa, T., Chong, D.K.X., Langridge, W.H.R.: Efficacy of a food plant based oral cholera toxin B subunit vaccine.-Nature Biotechnol. 16: 292–297, 1998.CrossRefGoogle Scholar
  3. Bardor, M., Faveeuw, C., Fitchette, A.-C., Gilbert, D., Galas, L., Trottein, F., Faye, L., Lerouge P.: Immunoreactivity in mammals of two typical plant glyco-epitopes, core α(1,3)-fucose and core xylose.-Glycobiology 13: 427–434, 2003.PubMedCrossRefGoogle Scholar
  4. Bardor, M., Loutelier-Bourhis, C., Paccalet, T., Cosette, P., Fitchette, A.-C., Vézina, L.-P., Trépanier, S., Dargis, M., Lemieux, R., Lange, C., Faye, L., Lerouge, P.: Monoclonal C5-1 antibody produced in transgenic alfalfa plants exhibits a N-glycosylation that is homogenous and suitable for glycol-engineering into human-compatible structures.-Plant Biotechnol. J. 1: 451–462, 2003.PubMedCrossRefGoogle Scholar
  5. Bříza, J., Pavingerová, D., Vlasák J., Ludvíková, V., Niedermeierová, H.: Production of human papillomavirus type 16 E7 oncoprotein fused with β-glucuronidase in transgenic tomato and potato plants.-Biol. Plant. 51: 268–276, 2007.CrossRefGoogle Scholar
  6. Busse, U., Levée, V., Trépanier, S., Vézina, L.-P.: Production of antibodies in alfalfa (Medicago sativa).-In: Erickson L. (ed.): Molecular Farming of Plants and Animal for Human and Veterinary Medicine. Pp. 199–219. J. Wiley & Sons, New York 2001.Google Scholar
  7. Chen, M., Liu, X., Wang, Z., Song, J., Qi, Q., Wang, P.G.: Modification of Plant N-glycans processing: the future of producing therapeutic protein by transgenic plants.-Med. Res. Rev. 25: 343–360, 2005.PubMedCrossRefGoogle Scholar
  8. Choi, S.-M., Lee, O.-S., Kwon, S.-Y., Kwak, S.-S., Yu, D.-Y., Lee, H.-S.: High expression of a human lactoferrin in transgenic tobacco cell cultures.-Biotechnol. Lett. 25: 213–218, 2003.PubMedCrossRefGoogle Scholar
  9. Chong, D.K.X., Langridge, W.H.R.: Expression of full-length bioactive antimicrobal human lactoferrin in potato plants.-Transgenic Res. 9: 71–78, 2000.PubMedCrossRefGoogle Scholar
  10. D’Aoust, M.-A., Lerouge, P., Busse, U., Bilodeau, P., Trépanier, S., Gomord, V., Faye, L., Vézina, L-P.: Efficient and reliable production of pharmaceuticals in alfalfa.-In: Fischer, R., Schillberg, S. (ed.): Molecular Farming. Pp. 1–12. Wiley-VCH-Verlag, Weinheim 2004.CrossRefGoogle Scholar
  11. Damiens, E., Mazurier, J., El Yazidi, I., Masson, M., Duthille, I., Spik, G., Boilly-Marer, Y.: Effects of human lactoferrin on NK cell cytotoxicity against haematopoietic and epithelial tumor cells.-Biochim. biophys. Acta 1402: 277–287, 1998.PubMedCrossRefGoogle Scholar
  12. Fischer, R., Emans, N., Schuster, F., Hellwig, S., Drossard, J.: Towards molecular farming in the future: using plant cell-suspension cultures as bioreactor.-Biotechnol. appl. Biochem. 30: 109–112, 1999.PubMedGoogle Scholar
  13. Fischer, R., Stoger, E., Schillberg, S., Christou, P., Twyman, R.M.: Plant-based productions of biopharmaceuticals.-Curr. Opin. Plant Biol. 7: 152–158, 2004.PubMedCrossRefGoogle Scholar
  14. Hendrixson, D.R., Qiu, J., Shewry, S.C., Fink, D.L., Petty, S., Baker, E.N., Plaut, A.G., Geme III, J.W.St.: Human milk lactoferrin is a serine protease that cleaves Haemophilus surface proteins at arginine-rich sites.-Mol. Microbiol. 47: 607–617, 2003.PubMedCrossRefGoogle Scholar
  15. Horn, M.E., Woodard, S.L., Howard, J.A.: Plant molecular farming: systems and products.-Plant Cell Rep. 22: 711–720, 2004.PubMedCrossRefGoogle Scholar
  16. Kamenarova, K., Gecheff, K., Stoyanova, M., Muhovski, Y., Anzai, H., Atanassov, A.: Production of recombinant human lactoferrin in transgenic barley.-Biotechnol. Biotechnol. Eq. 21: 18–27, 2007.Google Scholar
  17. Kanyshkova, T.G., Babina, S.E., Semenov, D.V., Isaeva, N., Vlassov, A.V., Neustroev, K.N., Kul’minskaya, A.A., Buneva, V.N., Nevinsky, G.A.: Multiple enzymic activities of human milk lactoferrin.-Eur. J. Biochem. 270: 3353–3361, 2003.PubMedCrossRefGoogle Scholar
  18. Kawakami, H., Lönnerdal, B.: Isolation and function of a receptor for human lactoferrin in human fetal intestinal brush-border membranes.-Amer. J. Physiol. 261: G841–G846, 1991.PubMedGoogle Scholar
  19. Krimpenfort, P.: The production of human lactoferrin in the milk of transgenic animals.-Cancer Detect Prev. 17: 301–305, 1993.PubMedGoogle Scholar
  20. Kwon, S.Y., Jo, S.H., Lee, O.S., Choi, S.M., Kwak, S.S., Lee, H.S.: Transgenic ginseng cell lines that produse high levels of a human lactoferrin.-Planta med. 69: 1005–1008, 2003.PubMedCrossRefGoogle Scholar
  21. Lee, T.-J., Coyne, P.P., Clemente, T.E., Mitra, A.: Partial resistance to bacterial wilt in transgenic tomato plants expressing antibacterial Lactoferrin gene.-J. amer. Soc. hort. Sci. 127: 158–168, 2002.Google Scholar
  22. Liang, Q., Richardson, T.: Expression and characterization of human lactoferrin in yeast Saccharomyces cerevisiae.-J. Agr. Food Chem. 41: 1800–1807, 1993.CrossRefGoogle Scholar
  23. Liu, J.R., Lee, M.H., Lee, S.H., Yu, D.-Y., Lee, K.-K., Chung, W.-I.: Expression of human lactoferrin gene in transgenic tobacco plants: feasibility of virus resistance.-In: Proceedings of the 1st Japan Korea Joint Seminar on the Production of Recombinant Proteins and Transgenic Animals in Present and Future. Pp. 39–45. 1996.Google Scholar
  24. Liu, T., Zhang, Y.-Z., Wu, X.-F.: High level expression of functionally active human lactoferrin in silkworm larvae.-J. Biotechnol. 118: 246–256, 2005.PubMedCrossRefGoogle Scholar
  25. Lönnerdal, B.: Expression of human milk proteins in plants.-J. amer. Coll. Nutr. 21: 218S–221S, 2002.Google Scholar
  26. Mason, H.S., Lam, D.M.K., Arntzen, C.J.: Expression ot hepatitis B surface antigen in transgenic plants.-Proc. nat. Acad. Sci. USA 89: 11745–11749, 1992.PubMedCrossRefGoogle Scholar
  27. Min, S.R., Woo, J.W., Jeong, W.J., Han, S.K., Lee, Y.B., Liu, J.R.: Production of human lactoferrin in transgenic cell suspension cultures of sweet potato.-Biol. Plant. 50: 131–134, 2006.CrossRefGoogle Scholar
  28. Mitra, A., Zhang, Z.: Expression of a human lactoferrin cDNA in tobacco cells produces antibacterial protein(s).-Plant Physiol. 106: 977–981, 1994.PubMedCrossRefGoogle Scholar
  29. Nandi, S., Suzuki, Y.A., Huang, J., Yalda, D., Pham, P., Wu, L., Bartley, G., Huang, N., Lönnerdal, B.: Expression of human lactoferrin in transgenic rice grains for the application in infant formula.-Plant Sci. 163: 713–722, 2002.CrossRefGoogle Scholar
  30. Naot, D., Grey, A., Reid, I.R., Cornish, J.: Lactoferrin — A novel bone growth factor.-Clin. med. Res. 3: 93–101, 2005.PubMedCrossRefGoogle Scholar
  31. Nuijens, J.H., Van Berkel, P.H., Geerts, M.E., Hartevelt, P.P., De Boer, H.A., Van Veen, H.A., Pieper, F.R.: Characterization of recombinant human lactoferrin secreted in milk of transgenic mice.-J. biol. Chem. 272: 8802–8807, 1997.PubMedCrossRefGoogle Scholar
  32. Platenburg, G.J., Kootwijk, E.P., Kooiman, P.M., Woloshuk, S.L., Nuijens, J.H., Krimpenfort, P.J., Pieper, F.R., De Boer, H.A., Strijker, R.: Expressiom of human lactoferrin in milk of transgenic mice.-Transgenic Res. 3: 99–108, 1994.PubMedCrossRefGoogle Scholar
  33. Salmon, V., Legrand, D., Slomianny, M.-C., Yazidi, I.E., Spik, G., Gruber, V., Bournat, P., Olagnier, B., Mison, D., Theisen, M., Mérot, B.: Production of human lactoferrin in transgenic tobacco plants.-Protein Exp. Purif. 13: 127–135, 1998.CrossRefGoogle Scholar
  34. Samyn-Petit, B., Dubos, J.-P.W., Chirat, F., Coddeville, B., Demaizieres, G., Farrer, S., Slomianny, M.-C., Theisen, M., Delannoy, P.: Comparative analysis of the site-specific N-glycosylation of human lactoferrin produced in maize and tobacco plants.-Eur. J. Biochem. 270: 3235–3242, 2003.PubMedCrossRefGoogle Scholar
  35. Samyn-Petit, B., Gruber, V., Flahaut, C., Wajda-Dubos, J.-P., Farrer, S., Pons, A., Desmaizieres, G., Slomianny, M.-C., Theisen, M., Delannoy, P.: N-glycosylation potential of maize: the human lactoferrin used as a model.-Glycoconjucate J. 18: 519–527, 2001.CrossRefGoogle Scholar
  36. Spik, G., Theisen, M.: Characterization of the post-translational biochemical processing of human lactoferrin expressed in transgenic tobacco.-Bundesgesundheitsblatt-Gesundheitsforsch-Gesundheitsschutz 43: 104–109, 2000.CrossRefGoogle Scholar
  37. Stoger, E., Ma, J.K.-C., Fischer, R., Christou, P.: Sowing the seeds of success: pharmaceutical proteins from plants.-Current Opin. Biotechnol. 16: 167–173, 2005.CrossRefGoogle Scholar
  38. Stowell, K.M., Rado, T.A., Funk, W.D., Tweedie, J.W.: Expression of cloned human lactoferrin in baby-hamster kidney cells.-Biochem. J. 276: 349–355, 1991.PubMedGoogle Scholar
  39. Sunil Kumar, G.B., Ganapathi, T.R., Srinivas, L., Revathi, C.J., Bapat, V.A.: Hepatitis B surface antigen expression in NT-1 cells of tobacco using different expression cassettes.-Biol. Plant. 51: 467–471, 2007.CrossRefGoogle Scholar
  40. Takase, K., Hagiwara, K., Onodera, H., Nishizawa, Y., Ugaki, M., Omura, T., Numata, S., Akutsu, K., Kumura, H., Shimazaki, K.: Constitutive expression of human lactoferrin and its N-lobe in rice plants to confer disease resistance.-Biochem. Cell Biol. 83: 239–249, 2005.PubMedCrossRefGoogle Scholar
  41. Twyman, R.M., Stoger, E., Schillberg, S., Christou, P., Fischer, R.: Molecular pharming in plants: host systems and expression technology.-Trends Biotechnol. 21: 570–577, 2003.PubMedCrossRefGoogle Scholar
  42. Van Berkel, P.H., Geerts, M.E., Van Veen, H.A., Kooiman, P.M., Pieper, F.R., De Boer, H.A., Nuijens, J.H.: Glycosylated and unglycosylated human lactoferrin both bind iron and show identical affinities towards human lysozyme and bacterial lipopolysaccharide, but differ in their susceptibilities towards tryptic proteolysis.-Biochem. J. 312: 107–114, 1995.PubMedGoogle Scholar
  43. Van Berkel, P.H., Nuijens, J.H., Van Veen, H.A., Abrahams, J.P., Thomassen, E.A.J. The protein structure of recombinant human lactoferrin produced in the milk of transgenic cows closely matches the structure of human milk-derived lactoferrin.-Transgenic Res. 14: 397–405, 2005.PubMedCrossRefGoogle Scholar
  44. Van der Strate, B.W.A., Beljaars, L., Molema, G., Harmsen, M.C., Meijer, D.K.F.: Antiviral activities of lactoferrin.-Antiviral Res. 52: 225–239, 2001.PubMedCrossRefGoogle Scholar
  45. Ward, P.P., Lo, J.Y., Duke, M., May, G.S., Headon, D.R., Conneely, O.M.: Production of biologically active recombinant human lactoferrin in Aspergillus orizae.-Bio/Technology 10: 784–789, 1992.PubMedCrossRefGoogle Scholar
  46. Ward, P.P., Piddington, C.S., Cunningham, G.A., Zhou, X., Wyatt, R.D., Conneely, O.M.: A system for production of commercial quantities of human lactoferrin: a broad spectrum natural antibiotic.-Biotechnology 13: 498–503, 1995.PubMedCrossRefGoogle Scholar
  47. Yamauchi, K., Tomita, M., Giehl, T.J., Ellison, R.T.: Antibacterial activity of lactoferrin and a pepsin derived lactoferrine peptide fragment.-Infect. Immun. 61: 719–728, 1993.PubMedGoogle Scholar
  48. Zhang, Z., Coyne, D.P., Vidaver, A.K., Mitra, A.: Expression of human lactoferrin cDNA confers resistance to Ralstonia solanacearum in transgenic tobacco plants.-Phytopathology 88: 730–734, 1998.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.AgroBioInstituteSofiaBulgaria

Personalised recommendations