Biologia Plantarum

, 52:413 | Cite as

Production of reactive oxygen species and development of antioxidative systems during in vitro growth and ex vitro transfer

  • P. Baťková
  • J. Pospíšilová
  • H. Synková


Ex vitro transfer is often stressful for in vitro grown plantlets. Water stress and photoinhibition, often accompanying the acclimatization of in vitro grown plantlets to ex vitro conditions, are probably the main factors promoting production of reactive oxygen species (ROS) and in consequence oxidative stress. The extent of the damaging effects of ROS depends on the effectiveness of the antioxidative systems which include low molecular mass antioxidants (ascorbate, glutathione, tocopherols, carotenoids, phenols) and antioxidative enzymes (superoxide dismutase, ascorbate peroxidase, catalase, glutathione reductase, monodehydroascorbate reductase, dehydroascorbate reductase). This review is focused on ROS production and development of antioxidative system during in vitro growth and their further changes during ex vitro transfer.

Additional key words

ascorbate ascorbate peroxidase carotenoids catalase dehydroascorbate reductase glutathione glutathione reductase malondialdehyde peroxidase superoxide dismutase 



abscisic acid


ascorbate peroxidase (EC






dehydroascorbate reductase (EC


gibberellic acid


glutathione reductase (EC


lipoxygenase (EC




monodehydroascorbate reductase (EC


polyethylene glycol


peroxidase (EC


reactive oxygen species


salicylic acid


superoxide dismutase (EC


  1. Adams, L.K., Benson, E.E., Staines, H.J., Bremmer, D.H., Millan, S., Deighton, N.: Effect of the lipid peroxidation products 4-hydroxy-2-nonenal and malondialdehyde on the proliferation and morphogenetic development of in vitro plant cells.-J. Plant Physiol. 155: 376–386, 1999.Google Scholar
  2. Agarwal, S., Pandey, V.: Antioxidant enzyme responses to NaCl stress in Cassia angustifolia.-Biol. Plant. 48: 555–560, 2004.CrossRefGoogle Scholar
  3. Agarwal, S., Sairam, R.K., Srivastava, G.C., Meena, R.C.: Changes in antioxidant enzymes activity and oxidative stress by abscisic acid and salicylic acid in wheat genotypes.-Biol. Plant. 49: 541–550, 2005.CrossRefGoogle Scholar
  4. Ali, B.M., Hahn, E.-J., Paek, K.-Y.: Effect of temperature on oxidative stress defence systems, lipid peroxidation and lipoxygenase activity in Phalaenopsis.-Plant Physiol. Biochem. 43: 213–223, 2005a.PubMedCrossRefGoogle Scholar
  5. Ali, B.M., Hahn, E.-J., Paek, K.-Y.: Effects of light intensities on antioxidant enzymes and malondialdehyde content during short-term acclimatization on micropropagated Phalaenopsis plantlet.-Environ. exp. Bot. 54: 109–120, 2005b.CrossRefGoogle Scholar
  6. Ali, B.M., Hahn, E.-J., Paek, K.-Y.: Antioxidative responses of Echinacea angustifolia cultured roots to different levels of CO2 in bioreactor liquid cultures.-Enzyme microb. Technol. 39: 982–990, 2006a.CrossRefGoogle Scholar
  7. Ali, B.M., Hahn, E.-J., Paek, K.-Y.: Copper-induced changes in the growth, oxidative metabolism, and saponin production in suspension culture roots of Panax ginseng in bioreactors.-Plant Cell Rep. 25: 1122–1132, 2006b.PubMedCrossRefGoogle Scholar
  8. Arruda, S.C.C., Souza, G.M., Almeida, M., Gonçalves, A.N.: Anatomical and biochemical characterization of the calcium effect on Eucalyptus urophylla callus morphogenesis in vitro.-Plant Cell Tissue Organ Cult. 63: 143–154, 2000.CrossRefGoogle Scholar
  9. Azevedo, H., Pinto, C.G.G., Santos, C.: Cadmium effects in sunflower: membrane permeability and changes in catalase and peroxidase activity in leaves and calluses.-J. Plant. Nutr. 28: 2233–2241, 2005.CrossRefGoogle Scholar
  10. Badawi, G.H., Yamauchi, Y., Shimada, E., Sasaki, R., Kawano, N., Tanaka, K., Tanaka, K.: Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts.-Plant Sci. 166: 919–928, 2004.CrossRefGoogle Scholar
  11. Bellaire, B.A., Carmody, J., Braud, J., Gossett, D.R., Banks, S.W., Cran Lucas, M., Fowler, T.E.: Involvement of abscisic acid-dependent and-independent pathways in the upregulation of antioxidant enzyme activity during NaCl stress in cotton callus tissue.-Free Rad. Res. 33: 531–545, 2000.CrossRefGoogle Scholar
  12. Benson, E.E.: Do free radicals have a role in plant tissue culture recalcitrance?-In Vitro cell. dev. Biol. Plant. 36: 163–170, 2000.Google Scholar
  13. Buddendorf-Joosten, J.M.C., Woltering, E.J.: Components of the gaseous environment and their effects on plant growth and development in vitro.-Plant Growth Regul. 15: 1–16, 1994.CrossRefGoogle Scholar
  14. Bueno, P., Piqueras, A., Kurepa, J., Savouré, A., Verbruggen, N., Van Montagu, M., Inzé, D.: Expression of antioxidant enzymes in response to abscisic acid and high osmoticum in tobacco BY-2 cell cultures.-Plant Sci. 138: 27–34, 1998.CrossRefGoogle Scholar
  15. Carvalho, L.C., Amâncio, S.: Antioxidant defence system in plantlets transferred from in vitro to ex vitro: effects of increasing light intensity and CO2 concentration.-Plant Sci. 162: 33–40, 2002.CrossRefGoogle Scholar
  16. Carvalho, L.C., Vilela, B.J., Vidigal, P., Mullineaux, P.M., Amâncio, S.: Activation of the ascorbate-glutathione cycle is an early response of micropropagated Vitis vinifera L. explants transferred to ex vitro.-Int. J. Plant Sci. 167: 759–770, 2006.CrossRefGoogle Scholar
  17. Chakrabarty, D., Park, S.Y., Ali, M.B., Shin, K.S., Paek, K.Y.: Hyperhydricity in apple: ultrastructural and physiological aspects.-Tree Physiol. 26: 377–388, 2006.PubMedGoogle Scholar
  18. Chandrasekhara Reddy, P., Halesh, G.K., Najranabhaiah, S.N.: Effect of PEG stress on growth and associated physiological and biohemical changes in selected and non selected upland rice.-Indian J. Plant Physiol. 9: 413–418, 2004.Google Scholar
  19. Chen, J., Ziv, M.: The effect of ancymidol on hyperhydricity, regeneration, starch and antioxidant enzymatic activities in liquid-cultured Narcissus.-Plant Cell Rep. 20: 22–27, 2001.CrossRefGoogle Scholar
  20. Dertinger, U., Schaz, U., Schulze, E.-D.: Age-dependence of the antioxidative system in tobacco with enhanced glutathione reductase activity or senescence-induced production of cytokinins.-Physiol. Plant. 119: 19–29, 2003.CrossRefGoogle Scholar
  21. Deryabin, A.N., Sin’kevich, M.S., Dubinina, I.M., Burakhanova, E.A., Trunova, T.I.: Effect of sugars on the development of oxidative stress induced by hypothermia in potato plants overexpressing yeast invertase gene.-Russ. J. Plant Physiol. 54: 32–38, 2007.CrossRefGoogle Scholar
  22. Desjardins, Y.: Photosynthesis in vitro-on the factors regulating CO2 assimilation in micropropagation systems.-Acta Hort. 393: 45–61, 1995.Google Scholar
  23. Dewir, Y.H., Chakrabarty, D., Ali, M.B., Hahn, E.J., Paek, K.Y.: Effects of hydroponic solution EC, substrates, PPF and nutrient scheduling on growth and photosynthetic competence during acclimatization of micropropagated Spathiphyllum plantlets.-Plant growth Regul. 46: 241–251, 2005.CrossRefGoogle Scholar
  24. Dewir, Y.H., Chakrabarty, D., Ali, M.B., Hahn, E.J., Paek, K.Y.: Lipid peroxidation and antioxidant enzyme activities of Euphorbia millii hyperhydric shoots.-Environ. exp. Bot. 58: 93–99, 2006.CrossRefGoogle Scholar
  25. Dewir, Y.H., Chakrabarty, D., Ali, M.B., Sing, N., Hahn, E.-J., Paek, K.-Y.: Influence of GA3, sucrose and solid medium/bioreactor culture on in vitro flowering of Spathiphyllum and association of glutathione metabolism.-Plant Cell Tissue Organ Cult. 90: 225–235, 2007.CrossRefGoogle Scholar
  26. Dutta Gupta, S., Datta, S.: Antioxidant enzyme activities during in vitro morphogenesis of gladiolus and the effect of application of antioxidants on plant regeneration.-Biol. Plant. 47: 179–183, 2003/4.CrossRefGoogle Scholar
  27. Erice, G., Aranjuelo, I., Irigoyen, J.J., Sánchez-Díaz, M.: Effect of elevated CO2, temperature and limited water supply on antioxidant status during regrowth of nodulated alfalfa.-Physiol. Plant. 130: 33–45, 2007.CrossRefGoogle Scholar
  28. Erturk, U., Sivritepe, N., Yerlikaya, C., Bor, M., Ozdemir, F., Turkan, I.: Response of the cherry rootstock to salinity in vitro.-Biol. Plant. 51: 597–600, 2007.CrossRefGoogle Scholar
  29. Fazeli, F., Ghorbanli, M., Niknam, V.: Effect of drought on biomass, protein content, lipid peroxidation and antioxidant enzymes in two sesame cultivars.-Biol. Plant. 51: 98–103, 2007.CrossRefGoogle Scholar
  30. Fornazier, R.F., Ferreira, R.R., Pereira, G.J.G., Molina, S.M.G., Smith, R.J., Lea, P.J., Azevedo, R.A.: Cadmium stress in sugar cane callus cultures: Effect on antioxidant enzymes.-Plant cell tissue Organ cult. 71: 125–131, 2002.CrossRefGoogle Scholar
  31. Franck, T., Kevers, C., Gaspar, T.: Protective enzymatic systems against activated oxygen species compared in normal and vitrified shoots of Prunus avium L. raised in vitro.-Plant Growth Regul. 16: 253–256, 1995.CrossRefGoogle Scholar
  32. Gajewska, E., Skłodowska, M., Słaba, M., Mazur, J.: Effect of nickel on antioxidative enzyme activities, proline and chlorophyll contents in wheat shoots.-Biol. Plant. 50: 653–659, 2006.CrossRefGoogle Scholar
  33. Gechev, T., Gadjev, I., Dukiandjiev, S., Minkov, I.: Reactive oxygen species as signalin molecules controlling stress adaptation in plants.-In: Pessarakli, M. (ed.): Handbook of Photosynthesis, Second Edition, Revised and Expanded. Pp. 209–218. Marcel Dekker, New York 2005.Google Scholar
  34. Gomes, R.A., Jr., Gratão, P.L., Gaziola, S.A., Mazzafera, P., Lea, P.J., Azevedo, R.A.: Selenium-induced oxidative stress in cofee cell suspension cultures.-Funct. Plant Biol. 34: 449–456, 2007.CrossRefGoogle Scholar
  35. Gomes, R.A., Moldes, C.S., Delite, F.S., Gratão, P.L., Mazzafera, P., Lea, P.J., Azevedo, R.A.: Nickel elicits a fast antioxidant response in Coffea arabica calls.-Plant Physiol. Biochem. 44: 420–429, 2006.CrossRefGoogle Scholar
  36. Gomes, R.A., Jr., Moldes, C.S., Delite, F.S., Pompeu, G.B., Gratão, P.L., Mazzafera, P., Lea, P.J., Azevedo, R.A.: Antioxidant metabolism of coffee cell suspension cultures in response to cadmium.-Chemosphere 65: 1330–1337, 2006.CrossRefGoogle Scholar
  37. Gossett, D.R., Millhollon, E.P., Cran Lucas, M., Banks, S.W., Marney, M.-M.: The effect of NaCl on antioxidant enzyme activities in callus tissue of salt-tolerant and salt-sensitive cotton cultivars (Gossypium hirsutum L.).-Plant Cell Rep. 13: 498–503, 1994.CrossRefGoogle Scholar
  38. Hatzilazarou, S.P., Syros, T.D., Yupsanis, T.A., Bosabalidis, A.M., Economou, A.S.: Peroxidases, lignin and anatomy during in vitro and ex vitro rooting gardenia (Gardenia jasminoides Ellis) microshoots.-J. Plant Physiol. 163: 827–836, 2006.PubMedCrossRefGoogle Scholar
  39. Hadži-Tašković Šukalović, V., Vuletić, M.: The relationship between respiration rate and peroxidase activities in maize root mitochondria.-Biol. Plant. 51: 297–302, 2007.CrossRefGoogle Scholar
  40. Hernández, J.A., Escobar, C., Creissen, G., Mullineaux, P.M.: Antioxidant enzyme induction in pea plants under high irradiance.-Biol. Plant. 50: 395–399, 2006.CrossRefGoogle Scholar
  41. Hoque, M.A., Banu, M.N.A., Okuma, E., Murata, Y.: Exogenous proline and glycinebetaine increase NaCl-induced ascorbate glutathione cycle enzyme activities, and proline improves salt tolerance more than glycinebetaine in tobacco bright Yellow-2 suspension-cultured cells.-J. Plant Physiol. 164: 1457–1468, 2007.PubMedCrossRefGoogle Scholar
  42. Hossain, Z., Mandal, A.K.A., Datta, K.S., Biswas, A.K.: Development of NaCl-tolerant strain in Chrysanthemum morifolium Ramat. through in vitro mutagenesis.-Plant Biol. 8: 450–461, 2006.PubMedCrossRefGoogle Scholar
  43. Hossain, Z., Mandal, A.K.A., Datta, K.S., Biswas, A.K.: Development of NaCl-tolerant line in Chrysanthemum morifolium Ramat. through shoot organogenesis of selected callus line.-J. Biotechnol. 129: 658–667, 2007.PubMedCrossRefGoogle Scholar
  44. Israr, M., Sahi, S.V.: Antioxidative responses to mercury in the cell cultures of Sesbania drummondii.-Plant Physiol. Biochem. 44: 590–595, 2006.PubMedCrossRefGoogle Scholar
  45. Jain, M., Nandwal, A.S., Kundu, B.S., Kumar, B., Sheoran, I.S., Kumar, N., Mann, A., Kukreja, S.: Water relations, activities of antioxidants, ethylene evolution and membrane integrity of pigeonpea roots as affected by soil moisture.-Biol. Plant. 50: 303–306, 2006.CrossRefGoogle Scholar
  46. Jeon, M.-W., Ali, M.B., Hahn, E.-J., Paek, K.-Y.: Photosynthetic pigments, morphology and leaf gas exchange during ex vitro acclimatization of micropropagated CAM Doritaenopsis plantlets under relative humidity and air temperature.-Environ. exp. Bot. 55: 183–194, 2006.CrossRefGoogle Scholar
  47. Jiang, M., Zhang, J.: Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves.-J. exp. Bot. 53: 2401–2410, 2002.PubMedCrossRefGoogle Scholar
  48. Jiang, M.-Y., Zhang, J.-H.: Abscisic acid and antioxidative defense in plant cells.-Acta bot. sin. 46: 1–9, 2004.Google Scholar
  49. Johnston, J.W., Harding, K., Benson, E.E.: Antioxidant status and genotypic tolerance of Ribes in vitro cultures to cryopreservation.-Plant Sci. 172: 524–534, 2007.CrossRefGoogle Scholar
  50. Khanna-Chopra, R., Selote, D.S.: Acclimation to drought stress generates oxidative stress tolerance in drought-resistant than-susceptible wheat cultivars under field conditions.-Environ. exp. Bot. 60: 276–283, 2007.CrossRefGoogle Scholar
  51. Koca, H., Ozdemir, F., Turkan, I.: Effect of salt stress on lipid peroxidation and superoxide dismutase and peroxidase activities of Lycopersicon esculentum and L. pennellii.-Biol. Plant. 50: 745–748, 2006.CrossRefGoogle Scholar
  52. Kozai, T., Smith, M.A.L.: Environmental control in plant tissue culture-general introduction and overview.-In: Aitken-Christie, J., Kozai, T., Smith, M.L. (ed.): Automation and Environmental Control in Plant Tissue Culture. Pp. 301–318. Kluwer Academic Publishers, Dordrecht 1995.Google Scholar
  53. Kubota, C., Fujiwara, K., Kitaya, Y., Kozai, T.: Recent advances in environment control in micropropagation.-In: Goto, E., Kurata, K., Hayashi, M., Sasa, S. (ed.): Plant Production in Closed Ecosystems. Pp. 153–169. Kluwer Academic Publishers, Dordrecht 1997.Google Scholar
  54. Kwak, J.M., Nguyen, V., Schroeder, J.I.: The role of reactive oxygen species in hormonal responses.-Plant Physiol. 141: 323–329, 2006.PubMedCrossRefGoogle Scholar
  55. Lai, Q.-X., Bao, Z.-Y., Zhu, Z.-J., Qian, Q.-Q., Mao, B.-Z.: Effect of osmotic stress on antioxidant enzymes activities in leaf discs of PSAG12-IPT modified gerbera.-J. Zhejiang Univ. Sci. B 8: 458–464, 2007.PubMedCrossRefGoogle Scholar
  56. Lambreva, M., Christov, K., Tsonev, T.: Short-term effect of elevated CO2 concentration and high irradiance on the antioxidant enzymes in bean plants.-Biol. Plant. 50: 617–623, 2006.CrossRefGoogle Scholar
  57. Lee, B.-R., Kim, K.-Y., Jung, W.-J., Avice, J.-C., Ourry, A., Kim, T.-H.: Peroxidases and lignification in relation to the intensity of water-deficit stress in white clover (Trifolium repens L.).-J. exp. Bot. 58: 1271–1279, 2007.PubMedCrossRefGoogle Scholar
  58. Levine, A.: Oxidative stresses as a regulator of environmental responses in plants.-In: Lerner, H.R. (ed.): Plant Responses to Environmental Stresses. From Phytohormones to Genome Reoganization. Pp. 247–264. Marcel Dekker, New York-Basel 1999.Google Scholar
  59. Liu, Q., Yang, J.L., He, L.S., Li, Y.Y., Zheng, S.J.: Effect of aluminum on cell wall, plasma membrane, antioxidants and root elongation in triticale.-Biol. Plant. 52: 87–92, 2008.CrossRefGoogle Scholar
  60. Lombardi, L., Sebastiani, L.: Copper toxicity in Prunus cerasifera: growth and antioxidant enzyme responses of in vitro grown plants.-Plant Sci. 168: 797–802, 2005.CrossRefGoogle Scholar
  61. Lombardi, L., Sebastiani, L., Vitagliano, C.: Physiological, biochemical, and molecular effects of in vitro induced iron deficiency in peach rootstock Mr.S2/5.-J. Plant Nutr. 26: 2149–2163, 2003.CrossRefGoogle Scholar
  62. Lu, S., Peng, X., Guo, Z., Zhang, G., Wang, Z., Wang, C., Pang, C., Fan, Z., Wang, J.: In vitro selection of salinity tolerant variants from triploid bermudagrass (Cynodon transvaalensis × C. dactylon) and their physiological responses to salt and drought stress.-Plant cell Rep. 26: 1413–1420, 2007.PubMedCrossRefGoogle Scholar
  63. Ludwig-Muller, J.: Peroxidase isoenzymes as markers for the rooting ability of easy-to-root and difficult-to-root Grevillea species and cultivars of Protea obtusifolia (Proteaceae).-In vitro cell. dev. Biol. Plant. 39: 377–383, 2003.CrossRefGoogle Scholar
  64. Mandhania, S., Madan, S., Sawhney, V.: Antioxidant defense mechanism under salt stress in wheat seedlings.-Biol. Plant. 50: 227–231, 2006.CrossRefGoogle Scholar
  65. Miszalski, Z., Kornas, A., Gawronska, K., Ślesak, I., Niewiadomska, E., Kruk, J., Christian, A.L., Fischer-Schliebs, E., Krisch, R., Lüttge, U.: Superoxide dismutase activity in C3 and C3/CAM intermediate species.-Biol. Plant. 51: 86–92, 2007.CrossRefGoogle Scholar
  66. Molina, A., Bueno, P., Marín, M.C., Rodríguez-Rosales, M.P., Belver, A., Venema, K., Donaire, J.P.: Involvement of endogenous salicylic acid content, lipoxygenase and antioxidant enzyme activities in the response of tomato cell suspension cultures to NaCl.-New Phytol. 156: 409–415, 2002.CrossRefGoogle Scholar
  67. Molassiotis, A.N., Sotiropoulos, T., Tanou, G., Diamantidis, G., Therios, I.: Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tip culture of the apple rootstock EM 9 (Malus domestica Borkh).-Environ. exp. Bot. 56: 54–62, 2006.CrossRefGoogle Scholar
  68. Molassiotis, A.N., Sotiropoulos, T., Tanou, G., Kofidis, G., Diamantidis, G., Therios, I.: Antioxidant and anatomical responses in shoot culture of the apple rootstock MM 106 treated with NaCl, KCl, mannitol or sorbitol.-Biol. Plant. 50: 61–68, 2006.CrossRefGoogle Scholar
  69. Morkunas, I., Garnczarska, M., Bednarski, W., Ratajczak, E., Waplak, S.: Metabolic and ultrastructural responses of lupine embryos axes to sugar starvation.-J. Plant Physiol. 160: 311–319, 2003.PubMedCrossRefGoogle Scholar
  70. Niknam, V., Razavi, N., Ebrahimzadeh, H., Sharifizadeh, B.: Effect of NaCl on biomass, protein and proline contents, and antioxidant enzymes in seedlings and calli of two Trigonella species.-Biol. Plant. 50: 591–596, 2006.CrossRefGoogle Scholar
  71. Obert, B., Benson, E.E., Millam, S., Preťvá, A., Bremner, D.H.: Moderation of morphogenetic and oxidative stress responses in flax in vitro cultures by hydroxynonenal and desferrioxamine.-J. Plant Physiol. 162: 537–547, 2005.PubMedCrossRefGoogle Scholar
  72. Olmos, E., Piqueras, A., Martínez-Solano, J.R., Hellín, E.: The subcellular localization of peroxidase and the implication of oxidative stress in hyperhydrated leaves of regenerated carnation plants.-Plant Sci. 130: 97–105, 1997.CrossRefGoogle Scholar
  73. Papadakis, A.K., Roubelakis-Angelakis, K.A.: Oxidative stress could be responsible for the recalcitrance of plant protoplasts.-Plant Physiol. Biochem. 40: 549–559, 2002.CrossRefGoogle Scholar
  74. Piqueras, A., Han, B.H., Van Huylenbroeck, J.M., Debergh, P.C.: Effect of different environmental conditions in vitro on sucrose metabolism and antioxidant enzymatic activities in cultured shoots of Nicotiana.-Plant Growth Regul. 25: 5–10, 1998.CrossRefGoogle Scholar
  75. Pospíšilová, J., Čatský, J., Šesták, Z.: Photosynthesis in plants cultivated in vitro.-In: Pessarakli, M. (ed.): Handbook of Photosynthesis. Pp. 525–540. Marcel Dekker, New York 1997.Google Scholar
  76. Pospíšilová, J., Dodd, I.C.: Role of plant growth regulators in stomatal limitation to photosynthesis during water stress.-In: Pessarakli, M. (ed.): Handbook of Photosynthesis, Second Edition, Revised and Expanded. Pp. 811–825. Marcel Dekker, New York 2005.Google Scholar
  77. Pospíšilová, J., Solárová, J., Čatský, J.: Photosynthetic responses to stresses during in vitro cultivation.-a review.-Photosynthetica 26: 3–18, 1992.Google Scholar
  78. Pospíšilová, J., Synková, H., Haisel, D., Semorádová, Š.: Acclimation of plantlets to ex vitro conditions: effects of air humidity, irradiance, CO2 concentration and abscisic acid.-Acta Hort. 748: 29–38, 2007.Google Scholar
  79. Procházková, D., Wilhelmová, N.: Leaf senescence and activities of the antioxidant enzymes.-Biol. Plant. 51: 401–406, 2007.CrossRefGoogle Scholar
  80. Qin, Y.H., Zhang, S.L., Zhang, L.X., Zhu, D.Y., Syed, A.: Response of in vitro strawberry to silver nitrate (AgNO3).-HortScience 40: 747–751, 2005.Google Scholar
  81. Queirós, F., Fidalgo, F., Santos, I., Salema, R.: In vitro selection of salt tolerant cell lines in Solanum tuberosum L.-Biol. Plant. 51: 728–734, 2007.CrossRefGoogle Scholar
  82. Qureshi, M.I., Abdin, M.Z., Qadir, S., Iqbal, M.: Lead-induced oxidative stress and metabolic alterations.-Biol. Plant. 51: 121–128, 2007.CrossRefGoogle Scholar
  83. Racchi, M.L., Bagnoli, F., Balla, I., Danti, S.: Differential activity of catalase and superoxide dismutase in seedlings and in vitro micropropagated oak (Quercus robur L.)-Plant Cell Rep. 20: 169–174, 2001.CrossRefGoogle Scholar
  84. Ray, T., Saha, P., Roy, S.C.: Commercial production of Cordyline terminalis (L) Kunth. from shoot apex meristem and assessment for genetic stability of somaclones by isozyme markers.-Scientia Hort. 108: 289–294, 2006.CrossRefGoogle Scholar
  85. Rodríguez-Rosales, M.P., Kerkeb, L., Bueno, P., Donaire, J.P.: Changes induced by NaCl in lipid content and composition, lipogenase, plasma membrane H+-ATPase and antioxidant enzyme activities of tomato (Lycopersicon esculentum Mill.) calli.-Plant Sci. 143: 143–150, 1999.CrossRefGoogle Scholar
  86. Romanowska, E., Wróblewska, B., Drożak, A., Zienkiewicz, M., Siedlecka, M.: Effect of Pb ions on superoxide dismutase and catalase activities in leaves of pea plants griown in high and low irradiance.-Biol. Plant. 52: 80–86, 2008.CrossRefGoogle Scholar
  87. Saher, S., Fernández-García, N., Piqueras, A., Hellín, E., Olmos, E.: Reducing properties, energy efficiency and carbohydrate metabolism in hyperhydric and normal carnation shoots cultured in vitro: a hypoxia stress?-Plant Physiol. Biochem. 43: 573–582, 2005a.PubMedCrossRefGoogle Scholar
  88. Saher, S., Piqueras, A., Hellin, E., Olmos, E.: Hyperhydricity in micropropagated carnation shoots: the role of oxidative stress.-Physiol. Plant. 120: 1152–161, 2004.CrossRefGoogle Scholar
  89. Saher, S., Piqueras, A., Hellin, E., Olmos, E.: Prevention of hyperhydricity in micropropagated carnation shoots by bottom cooling: implications of oxidative stress.-Plant Cell Tissue Organ Cult. 81: 149–158, 2005b.CrossRefGoogle Scholar
  90. Scebba, F., Arduini, I., Ercoli, L., Sebastiani, L.: Cadmium effects on growth and antioxidant enzymes activities in Miscanthus sinensis.-Biol. Plant. 50: 688–692, 2006.CrossRefGoogle Scholar
  91. Semorádová, Š., Synková, H., Pospíšilová, J.: Responses of tobacco plantlets to changes of irradiance during transfer from in vitro to ex vitro conditions.-Photosynthetica 40: 605–614, 2002.CrossRefGoogle Scholar
  92. Shamsi, I.H., Wei, K., Zhang, G.P., Jilani, G.H., Hassan, M.J.: Interactive effects of cadmium and aluminum on growth and antioxidative enzymes in soybean.-Biol. Plant. 52: 165–169, 2008.CrossRefGoogle Scholar
  93. Shao, H.-B., Chu, L.-Y., Lu, Z.-H., Kang, C.-M.: Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells.-Int. J. biol. Sci. 4: 8–14, 2008.Google Scholar
  94. Sharma, P., Dubey, R.S.: Ascorbate peroxidase from rice seedlings: properties of enzyme isoforms, effects of stresses and protective role of osmolytes.-Plant Sci. 167: 541–550, 2004.CrossRefGoogle Scholar
  95. Sharma, P., Dubey, R.S.: Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings.-Plant Growth Regul. 46: 209–221, 2005.CrossRefGoogle Scholar
  96. Sharma, P., Dubey, R.S.: Involvement of oxidative stress and role of antioxidative defence system in growing rice seedlings exposed to toxic concentrations of aluminum.-Plant Cell Rep. 26: 2027–2038, 2007.PubMedCrossRefGoogle Scholar
  97. Shohael, A.M., Ali, M.B., Yu, K.-W., Hahn, E.-J., Paek, K.-Y.: Effect of light on oxidative stress, secondary metabolites and induction of antioxidant enzymes in Eleutherococcus senticosus somatic embryos in bioreactor.-Process Biochem. 41: 1179–1185, 2006aCrossRefGoogle Scholar
  98. Shohael, A.M., Ali, M.B., Yu, K.-W., Hahn, E.-J., Paek, K.-Y.: Effect of temperature on secondary metabolites production and antioxidant enzyme activities in Eleutherococcus senticosus somatic embryos.-Plant cell Tissue Organ Cult. 85: 219–228, 2006b.CrossRefGoogle Scholar
  99. Sivritepe, N., Erturk, U., Yerlikaya, C., Turkan, I., Bor, M., Ozdemir, F.: Response of the cherry rootstock to water stress induced in vitro.-Biol. Plant. 52: 573–576, 2008.CrossRefGoogle Scholar
  100. Ślesak, I., Hałdaś, W., Ślesak, H.: Influence of exogenous carbohydrates on superoxide dismutase activity in Trifolium repens L. explants cultured in vitro.-Acta biol. cracov. 48: 93–98, 2006.Google Scholar
  101. Ślesak, I., Libik, M., Karpinska B., Karpinski, S., Miszalski, Z.: The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses.-Acta. biochim. polon. 54: 39–50, 2007.PubMedGoogle Scholar
  102. Ślesak, I., Libik, M., Miszalski, Z.: Superoxide dismutase activity in callus from C3-CAM intermediate plant Mesembryanthemum crystallinum.-Plant Cell Tissue Organ Cult. 75: 49–55, 2003.CrossRefGoogle Scholar
  103. Ślesak, I., Miszalski, Z.: Superoxide dismutase-like protein from roots of the intermediate C3-CAM plant Mesembryanthemum crystallinum L. in in vitro culture.-Plant Sci. 164: 497–505, 2003.CrossRefGoogle Scholar
  104. Sriskandarajah, S., Prinsen, E., Motyka, V., Dobrev, P.I., Serek, M.: Regenerative capacity of cacti Schlumbergera and Rhipsalidopsis in relation to endogenous phytohormones, cytokinin oxidase/dehydrogenase, and peroxidase activities.-J. Plant Growth Regul. 25: 79–88, 2006.CrossRefGoogle Scholar
  105. Synková, H., Pospíšilová, J.: In vitro precultivation of tobacco affects the response of antioxidative enzymes to ex vitro acclimation.-J. Plant Physiol. 159: 781–789, 2002.CrossRefGoogle Scholar
  106. Synková, H., Semorádová, Š., Schnáblová, R., Witters, E., Hušák, M., Valcky, R.: Cytokinin-induced activity of antioxidant enzymes in transgenic Pssu-ipt tobacco during plant ontogeny.-Biol. Plant. 50: 31–41, 2006.CrossRefGoogle Scholar
  107. Syros, T., Yupsanis, T., Zafiriadis, H., Economou, A.: Activity and isoforms of peroxidases, lignin and anatomy, during adventitious rooting in cuttings of Ebenus cretica L.-J. Plant Physiol. 161: 69–77, 2004.PubMedCrossRefGoogle Scholar
  108. Tang, W., Harris, L.C., Outhavong, V., Newton, R.J.: Antioxidants enhance in vitro plant regeneration by inhibiting the accumulation of peroxidase in Virginia pine (Pinus virginiana Mill.)-Plant Cell Rep. 22: 871–877, 2004a.PubMedCrossRefGoogle Scholar
  109. Tang, W., Newton, R.J.: Peroxidase and catalase activities are involved in direct adventitious shoot formation induced by thidiazuron in eastern white pine (Pinus strobus L.) zygotic embryos.-Plant physiol. Biochem. 43: 760–769, 2005.PubMedCrossRefGoogle Scholar
  110. Tang, W., Newton, R.J., Outhavong, V.: Exogenously added polyamines recover browning tissues into normal callus cultures and improve plant regeneration in pine.-Physiol. Plant. 122: 386–395, 2004b.CrossRefGoogle Scholar
  111. Van Huylenbroeck, J.M., Piqueras, A., Debergh, P.C.: Effect of light intensity on photosynthesis and toxic 02 scavenging enzymes during acclimatization of micropropagated Calathea.-Phyton 37: 283–290, 1997.Google Scholar
  112. Van Huylenbroeck, J.M., Piqueras, A., Debergh, P.C.: The evolution of photosynthetic capacity and the antioxidant enzymatic system during acclimatization of micropropagated Calathea plants.-Plant Sci. 155: 59–66, 2000.PubMedCrossRefGoogle Scholar
  113. Van Huylenbroeck, J.M., Van Laare, I.M.B., Piqueras, A., Debergh, P.C., Bueno, P.: Time course of catalase and superoxide dismutase during acclimatization and growth of micropropagated Calathea and Spathiphyllum plants.-Plant Growth Regul. 26: 7–14, 1998.CrossRefGoogle Scholar
  114. Vilela, B.J., Carvalho, L.C., Ferreira, J., Amâcio, S.: Gain of function of stomatal movements in rooting Vitis vinifera L. plants: regulation by H2O2 is independent of ABA before the protruding of roots.-Plant Cell Rep. 26: 2149–2157, 2007PubMedCrossRefGoogle Scholar
  115. Vital, S.A., Fowler, R.W., Virgen, A., Gossett, D.R., Banks, S.W., Rodriguez, J.: Opposite roles for superoxide and nitric oxide in the NaCl stress-induced upregulation of antioxidant enzyme activity in cotton callus tissue.-Environ. exp. Bot. 62: 60–68, 2008.CrossRefGoogle Scholar
  116. Wang, Y.-L., Wang, X.-D., Zhao, B., Wang, Y.-C.: Reduction of hyperhydricity in the culture of Lepidium meyenii shoots by the addition of rare earth elements.-Plant Growth Regul. 52: 151–159, 2007.CrossRefGoogle Scholar
  117. Xiong, Y.-C., Xing, G.-M., Gong, C.-M., Li, F.-M., Wang, S.-M., Li, Z.-X., Wang, Y.-F.: Dual role of abscisic acid on antioxidative defense in grass pea seedlings (Lathyrus sativus L.).-Pakistan J. Bot. 38: 999–1014, 2006.Google Scholar
  118. Xu, C.-M., Zhao, B., Wang, X.-D., Wang, Y.-C.: Lanthanum relieves salinity-induced oxidative stress in Saussurea involucrata.-Biol. Plant. 51: 567–570, 2007.CrossRefGoogle Scholar
  119. Zhang, A., Jiang, M., Zhang, J., Tan, M., Hu, X.: Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants.-Plant Physiol. 141: 475–487, 2006.PubMedCrossRefGoogle Scholar
  120. Zhang, F., Guo, J.-K., Yang, Y.-L., He, W.-L., Zhang, L.-X.: Changes in the pattern of antioxidant enzymes in wheat exposed to water deficit and rewatering.-Acta Physiol. Plant. 26: 345–352, 2004.CrossRefGoogle Scholar
  121. Zhang, F., Wang, Y., Yang, Y., Wu, H., Wang, D., Liu, J.: Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica.-Plant Cell Environ. 30: 775–785, 2007.PubMedCrossRefGoogle Scholar
  122. Zlatev, Z.S., Lidon, F.C., Ramalho, J.C., Yordanov, I.T.: Comparison of resistance to drought of three bean cultivars.-Biol. Plant. 50: 389–394, 2006.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Institute of Experimental BotanyAcademy of Sciences of the Czech RepublicPragueCzech Republic
  2. 2.Faculty of ScienceCharles University PraguePragueCzech Republic

Personalised recommendations