Biologia Plantarum

, 52:401

Physiology and biochemistry of waterlogging tolerance in plants

  • R. K. Sairam
  • D. Kumutha
  • K. Ezhilmathi
  • P. S. Deshmukh
  • G. C. Srivastava
Review

Abstract

Waterlogging is a serious problem, which affects crop growth and yield in low lying rainfed areas. The main cause of damage under waterlogging is oxygen deprivation, which affect nutrient and water uptake, so the plants show wilting even when surrounded by excess of water. Lack of oxygen shift the energy metabolism from aerobic mode to anaerobic mode. Plants adapted to waterlogged conditions, have mechanisms to cope with this stress such as aerenchyma formation, increased availability of soluble sugars, greater activity of glycolytic pathway and fermentation enzymes and involvement of antioxidant defence mechanism to cope with the post hypoxia/anoxia oxidative stress. Gaseous plant hormone ethylene plays an important role in modifying plant response to oxygen deficiency. It has been reported to induce genes of enzymes associated with aerenchyma formation, glycolysis and fermentation pathway. Besides, nonsymbiotic-haemoglobins and nitric oxide have also been suggested as an alternative to fermentation for maintaining lower redox potential (low NADH/NAD ratio), and thereby playing an important role in anaerobic stress tolerance and signaling.

Additional key words

anoxia antioxidative enzymes ethylene fermentation flooding glycolysis hypoxia nitric oxide non-symbiotic haemoglobin oxidative stress sugars 

Abbreviations

AA

ascorbate

ACC

1-aminocyclopropane-1-carboxylic acid

ADH

alcohol dehydrogenase

AEC

adenylate energy charge

ANP

anaerobic protein

APX

ascorbate peroxidase

CAT

catalase

DHAR

dihydroascorbate peroxidase

GR

glutathione reductase

GSH

glutathione

Hb

haemoglobin

cNR

cytosolic nitrate reductase

LDH

lactate dehydrogenase

MDHAR

monodihzdroascorbate peroxidase

PM-NR

plasma membrane nitrate reductase

PM-Ni-NOR

plasma membrane nitrite nitric oxide reductase

NAD(P)H

nicotine amide adenine dinucleotide phosphate-reduced

NiR

nitrite reductase

NO

nitric oxide

PDC

pyruvate decarboxylase

SOD

superoxide dismutase

SuSy

sucrose synthase

XET

xyloglucan endo-trans-glucosylase

References

  1. Agarwal, S., Sairam, R.K., Srivastava, G.C., Tyagi, A., Meena, R.C.: Role of ABA, salicylic acid, calcium and hydrogen peroxide on antioxidant enzymes induction in wheat seedlings.-Plant Sci. 169: 559–570, 2005.CrossRefGoogle Scholar
  2. Albrecht, G., Wiedenroth, E.M.: Protection against activated oxygen following re-aeration of hypoxically pre-treated wheat roots. The response of the glutathione system.-J. exp. Bot. 45: 449–455, 1994.CrossRefGoogle Scholar
  3. Arikado, H., Adachi, Y.: Anatomical and ecological responses of barley and some forage crops to the flooding treatment.-Bull. Fac. Agr. Mie Univ. 11: 1–29, 1955.Google Scholar
  4. Armstrong, A.C.: The effect of drainage treatments on cereal yields: results from experiments on clay lands.-J. agr. Sci. 91: 229–235, 1978.Google Scholar
  5. Armstrong, J., Armstrong, W.: Phragmites australis: a preliminary study of soil oxidizing sites and internal gas transport pathways.-New Phytol. 108: 373–382, 1988.CrossRefGoogle Scholar
  6. Aschi-Smiti, S., Chaïbi, W., Brouquisse, R., Bérénice-Ricard, B., Saglio, P.: Assessment of enzyme induction and aerenchyma formation as mechanisms for flooding tolerance in Trifolium subterraneum ‘Park’.-Ann. Bot. 91: 195–204, 2004.CrossRefGoogle Scholar
  7. Bacanammwo, M., Purcell, L.C.: Soybean root morphological and anatomical traits associated with acclimation to flooding.-Crop Sci. 39: 143–149, 1999.Google Scholar
  8. Baxter-Burrell, A., Chang, R., Springer, P.S., Bailey-Serres, J.: Gene and enhancer trap transposable elements reveal oxygen deprivation-regulated genes and their complex patterns of expression in Arabidopsis.-Ann. Bot. 91: 129–141, 2003.PubMedCrossRefGoogle Scholar
  9. Baxter-Burrell, A., Yang, Z., Springer, P.S., Bailey-Serres, J.: RopGAP4-dependent Rop-GTPase rheostat control of Arabidopsis oxygen deprivation tolerance.-Science 296: 2026–2028, 2002.PubMedCrossRefGoogle Scholar
  10. Biemelt, S., Keetman, U., Albrecht, G.: Re-aeration following hypoxia or anoxia leads to activation of the antioxidative defense system in roots of wheat seedlings.-Plant Physiol. 116: 651–658, 1998.PubMedCrossRefGoogle Scholar
  11. Biemelt, S., Keetman, U., Mock, H.P., Grimm, B.: Expression and activity of isoenzymes of superoxide dismutase in wheat roots in response to hypoxia and anoxia.-Plant Cell Environ. 23: 135–144, 2000.CrossRefGoogle Scholar
  12. Blokhina, O.B., Chirkova, T.V., Fagerstedt, K.V.: Anoxic stress leads to hydrogen peroxide formation in plant cells.-J. exp. Bot. 52: 1–12, 2001.CrossRefGoogle Scholar
  13. Blokhina, O.B., Fagerstedt, K.V., Chirkova, T.V.: Relationships between lipid peroxidation and anoxia tolerance in a range of species during post-anoxic reaeration.-Physiol. Plant. 105: 625–632, 1999.CrossRefGoogle Scholar
  14. Botrel, A., Kaiser, W.M.: Nitrate reductase activation state in barley roots in relation to the energy and carbohydrate status.-Planta 201: 496–501, 1997.PubMedCrossRefGoogle Scholar
  15. Botrel, A., Magne, C., Kaiser, W.M.: Nitrate reduction, nitrite reduction and ammonium assimilation in barley roots in response to anoxia.-Plant Physiol. Biochem. 34: 645–652, 1996.Google Scholar
  16. Bradford, K.J.N.D., Yang, S.F.: Xylem transport of 1-aminocyclopropane-1-carboxylic acid, an ethylene precursor, in waterlogged tomato plants.-Plant Physiol 65: 322–326, 1980.PubMedGoogle Scholar
  17. Bragina, T.V., Rodionova, N.A., Grinieva, G.M.: Ethylene production and activation of hydrolytic enzymes during acclimation of maize seedlings to partial flooding.-Russ. J. Plant Physiol. 50: 794–798, 2003.CrossRefGoogle Scholar
  18. Capone, R., Tiwari, B.S., Levine, A.: Rapid transmission of oxidative and nitrosative stress signals from roots to shoots in Arabidopsis.-Plant Physiol. Biochem. 42: 425–428, 2004.PubMedCrossRefGoogle Scholar
  19. Cecchini, G.: Function and structure of complex II of the respiratory chain.-Annu. Rev. Biochem. 72: 77–109, 2003.PubMedCrossRefGoogle Scholar
  20. Chang, W.W.P., Huang, L.M., Webster, C., Burlingame, A.L., Roberts, J.K.M.: Patterns of protein synthesis and tolerance of anoxia in roots tips of maize seedlings acclimated to a low oxygen environment, and identification of proteins by mass spectrometry.-Plant Physiol. 122: 295–317, 2000.PubMedCrossRefGoogle Scholar
  21. Chung, H.J., Ferl, R.J.: Arabidopsis alcohol dehydrogenase expression in both shoots and roots is conditioned by root growth environment.-Plant Physiol. 121: 429–436, 1999.PubMedCrossRefGoogle Scholar
  22. Clarke, A., Desikan, R., Hurst, R.D., Hancock, J.T., Neil, S.J.: NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures.-Plant J. 24: 667–677, 2000.PubMedCrossRefGoogle Scholar
  23. Cohen, E., Kende, H.: In vivo 1-aminocyclopropane-1-carboxylate synthase activity in internodes of deep water rice: Enhancement by submergence and low oxygen levels.-Plant Physiol. 84: 282–286, 1987.PubMedGoogle Scholar
  24. Crawford, R.M.M., Braendle, R.: Oxygen deprivation stress in a changing environment.-J. exp. Bot. 47: 145–159, 1996.CrossRefGoogle Scholar
  25. Dennis, E.S., Dolferus, R., Ellis, M., Rahman, M., Wu, Y., Hoeren, F.U., Grover, A., Ismond, K.P., Good, A.G., Peacock, W.J.: Molecular strategies for improving waterlogging tolerance in plants.-J. exp. Bot. 51: 89–97, 2000.PubMedCrossRefGoogle Scholar
  26. Di Iorio, E.E.: Preparation of derivatives of ferrous and ferric haemoglobin.-Methods Enzymol. 76: 57–72, 1981.PubMedCrossRefGoogle Scholar
  27. Dolferus, R., Klok, E.J., Delessert, C., Wilson, S., Ismond, K.P., Good, A.G., Peacock, W.J, Dennis, E.S.: Enhancing the anaerobic response.-Ann. Bot. 91: 111–117, 2003.PubMedCrossRefGoogle Scholar
  28. Dordas, C., Hasinoff, B.B., Igamberdiev, A.U., Manach, N., Rivoal, J., Hill, R.D.: Expression of a stress-induced hemoglobin affects NO levels produced by alfalfa root cultures under hypoxic stress.-Plant J. 35: 763–770, 2003b.PubMedCrossRefGoogle Scholar
  29. Dordas, C., Hasinoff, B.B., Rivoal, J., Hill, R.D.: Class-1 hemoglobins, nitrate and NO levels in anoxic maize cell-suspension cultures.-Planta 219: 66–72, 2004.PubMedCrossRefGoogle Scholar
  30. Dordas, C., Rivoal, J., Hill, R.D.: Plant haemoglobins, nitric oxide and hypoxic stress.-Ann. Bot. 91: 173–178, 2003a.PubMedCrossRefGoogle Scholar
  31. Drew, M.C.: Sensing soil oxygen.-Plant Cell Environ 13: 681–693, 1990.CrossRefGoogle Scholar
  32. Drew, M.C.: Oxygen deficiency and root metabolism: injury and acclimation under hypoxia.-Annu. Rev. Plant Physiol. Plant mol. Biol. 48: 223–250, 1997.PubMedCrossRefGoogle Scholar
  33. Drew, M.C., Jackson, M.B., Gifford, S.C., Campbel, l.R.: Inhibition by silver ions of gas space (aerenchyma) formation in adventitious roots of Zea mays L. subjected to exogenous ethylene or to oxygen deficiency.-Planta 153: 217–224, 1981.CrossRefGoogle Scholar
  34. Duff, S.M.G., Wittenberg, J.B., Hill, R.D.: Expression, purification, and properties of recombinant barley (Hordeum sp.) hemoglobin: optical spectra and reactions with gaseous ligands.-J. biol. Chem. 272: 16746–16752, 1997.PubMedCrossRefGoogle Scholar
  35. Durner, J., Klessig, D.F.: Nitric oxide as a signal in plants.-Curr. Opin. Plant Biol. 2: 369–374, 1999.PubMedCrossRefGoogle Scholar
  36. Durner, J., Wendehenne, D., Klessig, D.F.: Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose.-Proc. nat. Acad. Sci. USA 95: 10328–10333, 1998.PubMedCrossRefGoogle Scholar
  37. Fan, T.W.M., Lane, A.N., Higashi, R.A.: In vivo and in vitro metabolomic analysis of anaerobic rice coleoptiles revealed unexpected pathways.-Russ. J. Plant Physiol. 50: 787–793, 2003.CrossRefGoogle Scholar
  38. Fukao, T., Bailey-Serres, J.: Plant responses to hypoxia — is survival a balancing act?-Trends Plant Sci. 9: 449–456, 2004.PubMedCrossRefGoogle Scholar
  39. Gunawardena, A., Pearce, D.M., Jackson, M.B., Hawes, C.R., Evans, D.E.: Characterization of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize (Zea mays L.).-Planta 212: 205–214, 2001.PubMedCrossRefGoogle Scholar
  40. Guy, P.A., Sidaner, J.P., Schroeder, S., Edney, M., MacGregor, A.W., Hill, R.D.: Embryo phytoglobin gene expression as a measure of germination in cereals.-J. Cereal Sci. 36: 147–156, 2002.CrossRefGoogle Scholar
  41. Hagler, L., Coppes, R.I., Jr., Herman, R.H.: Metmyoglobin reductase. Identification and purification of a reduced nicotinamide adenine dinucleotide-dependent enzyme from bovine heart which reduces metmyoglobin.-J. biol. Chem. 254: 6505–6514, 1979.PubMedGoogle Scholar
  42. Hänsch, R., Mendel, R.R., Cerff, R., Hehl, R.: Light-dependent anaerobic induction of the maize glyceraldehyde-3-phosphate dehydrogenase 4 (GapC4) promoter in Arabidopsis thaliana and Nicotiana tobacum.-Ann. Bot. 91: 149–154, 2003.PubMedCrossRefGoogle Scholar
  43. Hill, R.D.: What are hemoglobins doing in plants?-Can. J. Bot. 76: 707–712, 1998.CrossRefGoogle Scholar
  44. Igamberdiev, A.U., Baron, K., Manac’H-Little, N., Stoimenova, M., Hill, R.D.: The haemoglobin/nitric oxide cycle: involvement in flooding stress and effects on hormone signalling.-Ann. Bot. 96: 557–564, 2005.PubMedCrossRefGoogle Scholar
  45. Igamberdiev, A.U., Hill, R.D.: Nitrate, NO and haemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathway.-J. exp. Bot. 55: 2473–2482, 2004.PubMedCrossRefGoogle Scholar
  46. Jackson, M.B.: Ethylene and responses of plants to soil waterlogging and submergence.-Annu. Rev. Plant Physiol. 36: 145–174, 1985.CrossRefGoogle Scholar
  47. Jackson, M.B., Armstrong, W.: Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence.-Plant Biol. 1: 274–287, 1999.CrossRefGoogle Scholar
  48. Jackson, M.B., Drew, M.C.: Effects of flooding on growth and metabolism of herbaceous plants.-In: Kozlowski, T.T. (ed.): Flooding and Plant Growth. Pp. 47–128. Academic Press, Orlando 1984.Google Scholar
  49. Johnson, J.R., Cobb, B.G., Drew, M.C.: Hypoxic induction of anoxia tolerance in roots of Adh null Zea mays.-Plant Physiol. 105: 61–67, 1994.PubMedCrossRefGoogle Scholar
  50. Justin, S.H.F.W., Armstrong, W.: Evidence for the involvement of ethene in aerenchyma formation in adventitious roots of rice (Oryza sativa).-New Phytol. 118: 49–62, 1991.CrossRefGoogle Scholar
  51. Kalashnikov, Yu.E., Balakhnina, T.I., Zakrzhevsky, D.A.: Effect of soil hypoxia on activation of oxygen and the system of protection from oxidative destruction in roots and leaves of Hordeum vulgare.-Russ. J. Plant Physiol. 41: 583–588, 1994.Google Scholar
  52. Kim, P.K., Zamora, R., Petrosko, P., Billiar, T.R.: The regulatory role of nitric oxide in apoptosis.-Int. Immunopharm. 1: 1421–1441, 2001.CrossRefGoogle Scholar
  53. Klok, E.J., Wilson, I.W., Wilson, D., Chapman, S.C., Ewing, R.M., Somerville, S.C., Peacock, W.J., Dolferus, R., Dennis, E.S.: Expression profile analysis of the low-oxygen response in Arabidopsis root cultures.-Plant Cell 14: 2481–2494, 2002.PubMedCrossRefGoogle Scholar
  54. Konings, H.: Ethylene-promoted formation of aerenchyma in seedling roots of Zea mays L. under aerated and non-aerated conditions.-Physiol. Plant. 54: 119–124, 1982.CrossRefGoogle Scholar
  55. Lee, T.G., Jang, C.S., Kim, J.Y., Dong Sub Kim, D.S., Park, J.H., Kim, D.Y Seo, Y.W.: A Myb transcription factor (TaMyb1) from wheat roots is expressed during hypoxia: roles in response to the oxygen concentration in root environment and abiotic stresses.-Physiol. Plant. 129: 375–385, 2007.CrossRefGoogle Scholar
  56. Lemke-Keyes, C.A., Sachs, M.M.: Anaerobic tolerant null: a mutant that allows Adh1 nulls to survive anaerobic treatment.-J. Hered. 80: 316–319, 1989a.PubMedGoogle Scholar
  57. Lemke-Keyes, C.A., Sachs, M.M.: Genetic variation for seedling tolerance to anaerobic stress in maize germplasm.-Maydica 34: 329–337, 1989b.Google Scholar
  58. Mergemann, H., Sauter, M.: Ethylene induces epidermal cell death at the site of adventitious root emergence in rice.-Plant Physiol. 124: 609–614, 2000.PubMedCrossRefGoogle Scholar
  59. Meyerhoff, P.A., Fox, T.C., Travis, R.L., Huffaker, R.C.: Characterization of the association of nitrate reductase with barley (Hordeum vulgare L.) root membranes.-Plant Physiol. 104: 925–936, 1994.PubMedGoogle Scholar
  60. Monk, L.S, Fagerstedt, K.V., Crawford, R.M.M.: Superoxide dismutase as an anaerobic polypeptide — a key factor in recovery from oxygen deprivation in Iris pseudacorus.-Plant Physiol. 85: 1016–1020, 1987.PubMedGoogle Scholar
  61. Moran, J.F., Sun, Z., Sarath, G., Arredondo-Peter, R., James, E.K., Becana, M., Klucas, R.V.: Molecular cloning, functional characterization, and subcellular localization of soybean nodule dihydrolipoamide reductase.-Plant Physiol. 128: 300–313, 2002.PubMedCrossRefGoogle Scholar
  62. Musgrave, A., Jackson, M.B., Long, E.: Gallitriche stem elongation is controlled by ethylene and gibberellin.-Nature New Biol. 238: 93–96, 1972.CrossRefGoogle Scholar
  63. Nie, X.Z., Hill, R.D.: Mitochondrial respiration and hemoglobin gene expression in barley aleurone tissue.-Plant Physiol. 114: 835–840, 1997.PubMedGoogle Scholar
  64. Olive, M.R, Peacock, W.J., Dennis, E.S.: The anaerobic responsive element contains two GC-rich sequences essential for binding a nuclear protein and hypoxic activation of the maize Adh1 promoter.-Nucleic Acid Res. 19: 7053–7060, 1991.PubMedCrossRefGoogle Scholar
  65. Olson, D.C., Oetiker, J.H., Yang, S.F.: Analysis of LE-ACS3, a 1-aminocyclopropane-1-carboxylic acid synthase gene expressed during flooding in the roots of tomato plants.-J. biol. Chem. 270: 14056–14061, 1995.PubMedCrossRefGoogle Scholar
  66. Pastori, G.M., Foyer, C.H.: Common components, networks, and pathways of cross-tolerance to stress. The central role of ‘redox’ and abscisic acid-mediated controls.-Plant Physiol. 129: 7460–7468, 2002.CrossRefGoogle Scholar
  67. Peng, H.P., Chan, C.S., Shih, M.C., Yang, S.F.: signaling events in the hypoxic induction of alcohol dehydrogenase gene in Arabidopsis.-Plant Physiol. 126: 742–749, 2001.PubMedCrossRefGoogle Scholar
  68. Peschke, V.M., Sachs, M.M.: Characterization and expression of anaerobically induced maize transcripts.-Plant Physiol. 104: 387–394, 1994.PubMedCrossRefGoogle Scholar
  69. Ponnamperuma, F.N.: The chemistry of submerged soils.-Adv. Agron. 24: 29–96, 1972.CrossRefGoogle Scholar
  70. Pradet, A., Bomsel, J.L.: Energy metabolism in plants under hypoxia and anoxia.-In: Hook, D.D., Crawford, R.M.M. (ed.): Plant Life in Anaerobic Environments. Pp. 89–118. Ann. Arbor Sci. Publ., Ann Arbor 1978.Google Scholar
  71. Recard, B., Van Toi, T., Chourey, P., Saglio, P.: Evidence for the critical role of sucrose synthase for anoxic tolerance of maize roots using double mutant.-Plant Physiol. 116: 1323–1331, 1998.CrossRefGoogle Scholar
  72. Rieu, I., Cristescu, S.M., Harren, F.J.M., Huibers, W., Voesenek, L.A.C.J., Mariani, C., Vriezen, W.H.: RP-ACS1, a flooding-induced 1-aminocyclopropane-1-carboxylate synthase gene of Rumex palustris, is involved in rhythmic ethylene production.-J. exp. Bot. 56: 841–849, 2005.PubMedCrossRefGoogle Scholar
  73. Roberts, J.K.M., Callis, J., Jardetzky, O., Walbot, V., Freeling, M.: Cytoplasmic acidosis as a determinant of flooding intolerance in plants.-Proc. nat. Acad. Sci. USA 81: 6029–6033, 1984a.PubMedCrossRefGoogle Scholar
  74. Roberts, J.K.M., Callis, J., Wemmer, R., Walbot, V., Jardetzky, O.: Mechanism of cytoplasmic pH regulation in hypoxic maize root tips and its role in survival under hypoxia.-Proc. nat. Acad. Sci. USA 81: 3379–3383, 1984b.PubMedCrossRefGoogle Scholar
  75. Saab, I.N., Sachs, M.M.: A flooding-induced xyloglucan endotransglycosylase homolog in maize is responsive to ethylene and associated with aerenchyma.-Plant Physiol. 112: 385–391, 1996.PubMedCrossRefGoogle Scholar
  76. Sachs, M.M., Freeling, M., Okomoto, R.: The anaerobic proteins of maize.-Cell 20: 761–767, 1980.PubMedCrossRefGoogle Scholar
  77. Sachs, M.M., Subbaiah, C.C., Saab, I.N.: Anaerobic gene expression and flooding tolerance in maize.-J. exp. Bot. 47: 1–15, 1996.CrossRefGoogle Scholar
  78. Setter, T.L., Kupkanchanakul, T., Kupkanchanakul, K., Bhekasut, P., Wiengweera, A., Greenway, H.: Concentrations of CO2 and O2 in floodwater and internodal lacunae of floating rice growing at 1–2 metre water depths.-Plant Cell Environ. 10: 767–776, 1987.Google Scholar
  79. Sinclair, J.: Changes in spinach thylakoid activity due to nitrite ions.-Photosynth. Res. 12: 255–263, 1987.CrossRefGoogle Scholar
  80. Sowa, A., Duff, S.M.G., Guy, P.A., Hill, R.D.: Altering hemoglobin levels changes energy status in maize cells under hypoxia.-Proc. nat. Acad. Sci. USA 95: 10317–10321, 1998.PubMedCrossRefGoogle Scholar
  81. Stöhr, C., Mäck, G.: Diurnal changes in nitrogen assimilation of tobacco roots.-J. exp. Bot. 52: 1283–1289, 2001.PubMedCrossRefGoogle Scholar
  82. Stöhr, C., Ullrich, W.R.: A succinate-oxidizing nitrate reductase is located at the plasma membrane of plant roots.-Planta 203: 129–132, 1997.CrossRefGoogle Scholar
  83. Stöhr, C., Ullrich, W.R.: Generation and possible roles of NO in plant roots and their apoplastic space.-J. exp. Bot. 53: 2293–2303, 2002.PubMedCrossRefGoogle Scholar
  84. Stöhr, C., Strube, F., Marx, G., Ullrich, W.R., Rockel, P.A.: Plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite.-Planta 212: 835–841, 2001.PubMedCrossRefGoogle Scholar
  85. Stünzi, J.T., Kende, H.: Gas composition in the internal air spaces of deep water rice in relation to growth induced by submergence.-Plant Cell Physiol. 30: 49–56, 1989.Google Scholar
  86. Subbaiah, C.C., Sachs, M.M.: Molecular and cellular adaptations of maize to flooding stress.-Ann. Bot. 91: 119–127, 2003.PubMedCrossRefGoogle Scholar
  87. Taylor, E.R., Nie, X.Z., MacGregor, A.W., Hill, R.D.: A cereal haemoglobin gene is expressed in seed and root tissues under anaerobic conditions.-Plant mol. Biol. 24: 853–862, 1994.PubMedCrossRefGoogle Scholar
  88. Topunov, A.F., Melik-Sarkisian, S.S., Lysenko, L.A., Kretovich, V.L.: [Properties of methemoglobin reductase from lupine nodules.]-Biokhimiya 45: 2053–2058, 1980. [In Russ.]Google Scholar
  89. Trevaskis, B., Watts, R.A., Andersson, C., Llewellyn, D., Hargrove, M.S., Olson, J.S., Dennis, E.S. Peacock, W.J.: Two haemoglobin genes in Arabidopsis thaliana: the evolutionary origins of leghemoglobins.-Proc. nat. Acad. Sci. USA 94: 12230–12234, 1997.PubMedCrossRefGoogle Scholar
  90. Ushimaru, T., Maki, Y., Sano, S., Koshiba, K., Asada, K., Tsuji, H.: Induction of enzymes involved in the ascorbate-dependent antioxidative system, namely ascorbate peroxidase, mono dehydroascorbate reductase and dehydroascorbate reductase, after exposure to air of rice (Oryza sativa) seedlings germinated under water.-Plant Cell Physiol. 38: 541–549, 1997.Google Scholar
  91. Van der Straeten, D., Zhou, Z., Prinsen, E., Van Onckelen, H.A., Van Montagu, M.C.: A comparative molecular-physiological study of submergence response in lowland and deepwater rice.-Plant Physiol. 125: 955–968, 2001.CrossRefGoogle Scholar
  92. Van Toai, T.T., Bolles, C.S.: Postanoxic injury in soybean (Glycine max) seedlings.-Plant Physiol. 97: 588–592, 1991.CrossRefGoogle Scholar
  93. Visser, E.J.W., Bogemann, G., Blom, C.W.P.M., Voesenek, L.A.C.J.: Ethylene accumulation in waterlogged Rumex plants promotes formation of adventitious roots.-J. exp. Bot. 47: 403–410, 1996.CrossRefGoogle Scholar
  94. Visser, E.J.W., Bogemann, G.M., Van de Steeg, H.M., Pierik, R., Blom, W.P.M.: Flooding tolerance of Carex species in relation to field distribution and aerenchyma formation.-New Phytol. 148: 93–103, 2000.CrossRefGoogle Scholar
  95. Visser, E.J.W., Nabben, R.H.M., Blom, C.W.P.M., Voesenek, L.A.C.J.: Elongation by primary lateral roots and adventitious roots during conditions of hypoxia and high ethylene concentration.-Plant Cell Environ. 20: 647–653, 1997.CrossRefGoogle Scholar
  96. Voesenek, L.A.C.J., Banga, M., Their, R.H., Mudde, C.M., Harren, F.M., Barendse, G.W.M., Blom, C.W.P.M.: Submergence-induced ethylene synthesis, entrapment, and growth in two plant species with contrasting flooding resistances.-Plant Physiol. 103: 783–791, 1993.PubMedGoogle Scholar
  97. Voesenek, L.A.C.J., Blom, C.W.P.M., Pourvels, R.H.W.: Root and shoot development of Rumex species under waterlogged conditions.-Can. J. Bot. 67: 1865–1869, 1989.Google Scholar
  98. Vriezen, W.H., Hulzink, R., Mariani, C., Voesenek, L.A.C.J.: 1-aminocyclopropane-1-carboxylate oxidase activity limits ethylene biosynthesis in Rumex palustris during submergence.-Plant Physiol. 121: 189–196, 1999.PubMedCrossRefGoogle Scholar
  99. Wang, R., Guegler, K., LaBrie, S.T., Crawford, N.M. Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate.-Plant Cell 12: 1491–1510, 2000.PubMedCrossRefGoogle Scholar
  100. Ward, M.R., Grimes, H.D., Huffaker, R.C.: Latent nitrate reductase activity is associated with the plasma membrane of corn roots.-Planta 177: 470–475, 1989.PubMedCrossRefGoogle Scholar
  101. Watkin, E.L.J., Campbell, C.J., Greenway, H.: Root development and aerenchyma formation in two wheat cultivars and one Triticale cultivar grown in stagnant agar and aerated nutrient solution.-Ann. Bot. 81: 349–354, 1998.CrossRefGoogle Scholar
  102. Wollenweber-Ratzer, B., Crawford, R.M.M.: Enzymatic defence against post-anoxic injury in higher plants.-Proc. roy. Soc. Edinburgh 102B: 381–390, 1994.Google Scholar
  103. Yamasaki, H., Sakihama, Y., Takahashi, S.: An alternative pathway of nitric oxide production: new features of an old enzyme.-Trends Plant Sci. 4: 128–129, 1999.PubMedCrossRefGoogle Scholar
  104. Yamasaki, H., Sakihama, Y.: Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species.-FEBS Letts. 468: 89–92, 2000.CrossRefGoogle Scholar
  105. Yan, B., Da, Q., Liu, X., Huang, S., Wang, Z.: Flooding-induced membrane damage, lipid oxidation and activated oxygen generation in corn leaves.-Plant Soil 179: 261–268, 1996.CrossRefGoogle Scholar
  106. Zeng, Y., Avigne, W.T., Koch, K.E.: Rapid repression of maize invertase by low oxygen. Invertase/sucrose synthase balance, sugar signaling potential and seedling survival.-Plant Physiol. 121: 599–608, 1999.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • R. K. Sairam
    • 1
  • D. Kumutha
    • 1
  • K. Ezhilmathi
    • 1
  • P. S. Deshmukh
    • 1
  • G. C. Srivastava
    • 1
  1. 1.Division of Plant PhysiologyIndian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations