Biologia Plantarum

, Volume 52, Issue 2, pp 381–384

Transient RNAi based gene silencing of glutathione synthetase reduces glutathione content in Camellia sinensis (L.) O. Kuntze somatic embryos

Brief Communication

Abstract

We report on gene silencing of glutathione synthetase (GSHS) that reduces reduced glutathione (GSH) content in somatic embryos of Camellia sinensis L. Using degenerate primers with cDNA of Camellia sinensis, a 457 bp GSHS gene fragment was cloned through polymerase chain reaction. This fragment was used in making ihpRNA. For this it was cloned in sense at AscI and SwaI and in anti-sense at Bam HI and XbaI restriction sites of pFGC5941 that has chalcone synthase (Chs) intron between SwaI and BamHI restriction sites. Resultant RNAi construct was used for C. sinensis somatic embryos transformation through Agrobacterium. After 11, 13 and 15 d of transformation, embryo GSHS transcript levels and GSH content decreased to a great extent which documented the feasibility of RNAi based gene silencing in C. sinensis.

Additional key words

Agrobacterium PCR RNA interference 

Abbreviations

CsGSHS

Camellia sinensis glutathione synthetase

dsRNA

double stranded RNA

GSH

reduced glutathione

GSHS

glutathione synthetase

RNAi

RNA interference

siRNA

small interfering RNA

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, R.S., Millgate, A.G., Chitty, J.A., Thisleton, J., Miller, J.A.C., Fist, A.J., Gerlach, W.L., Larkin, P.J.: RNAi-mediated replacement of morphine with the non-narcotic alkaloid reticuline in opium poppy.-Nat. Biotech. 22: 1559–1566, 2004.CrossRefGoogle Scholar
  2. Baulcombe, D.: RNA silencing in plants.-Nature 431: 356–363, 2004.PubMedCrossRefGoogle Scholar
  3. Chuang, C.F., Meyerowitz, E.M.: Specific and heritable genetic interference by double stranded RNA in Arabidopsis thaliana.-Proc. nat. Acad. Sci. USA 97: 4985–4990, 2000.PubMedCrossRefGoogle Scholar
  4. Fukusaki, E.I., Kawasaki, K., Kajiyama, S., An, C.I., Suzuki, K., Tanaka, Y., Kobayashi, A.: Flower color modulations of Torenia hybrida by downregulation of chalcone synthase genes with RNA interference.-J. Biotechnol. 111: 229–240, 2004.PubMedCrossRefGoogle Scholar
  5. Hamilton, A.J., Baulcombe, D.: A species of small antisense RNA in posttranscriptional gene silencing in plants.-Science 286: 950–952, 1999.PubMedCrossRefGoogle Scholar
  6. Lee, S., Kim, J., Han, J.J., Han, M.J., An, G.: Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1 / AGAMOUS-LIKE 20 (SOC1 / AGL20) ortholog in rice.-Plant J. 38: 754–764, 2004.PubMedCrossRefGoogle Scholar
  7. Lipardi, C., Wei, Q., Paterson, B.M.: RNAi as random degradative PCR. siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs.-Cell 107: 297–307, 2001.PubMedCrossRefGoogle Scholar
  8. May, M.J., Vernoux, T., Leaver, C., Van Montagu, M., Inze, D.: Glutathione homeostasis in plants: implications for environmental sensing and plant development.-J. exp. Bot. 49: 649–667, 1998.CrossRefGoogle Scholar
  9. Miki, D., Itoh, R., Shimamoto, K.: RNA silencing of single and multiple members in a gene family of rice.-Plant Physiol. 138: 1903–1913, 2005.PubMedCrossRefGoogle Scholar
  10. Mondal, T.K., Bhattacharya, A., Ahuja, P.S., Chand, P.K.: Transgenic tea [Camellia sinensis (L.) O. Kuntze cv. Kangra Jat] plants obtained by Agrobacterium mediated transformation of somatic embryos.-Plant Cell Rep. 20: 712–720, 2001.CrossRefGoogle Scholar
  11. Noctor, G., Gomez, L., Vanacker, H., Foyer, C.H.: Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling.-J. exp. Bot. 53: 1283–1304, 2002.PubMedCrossRefGoogle Scholar
  12. Ogita, S., Uefuji, H., Morimoto, M., Sano, H.: Application of RNAi to confirm theobromine as the major intermediate for caffeine biosynthesis in coffee plants with potential for construction of decaffeinated varieties.-Plant mol. Biol. 54: 931–941, 2004.PubMedCrossRefGoogle Scholar
  13. Page, D.R., Grossniklaus, U.: The art and design of genetic screens: Arabidopsis thaliana.-Nat. Rev. Genet. 3: 124–136, 2002.PubMedCrossRefGoogle Scholar
  14. Ribas, A.F., Kobayashi, A.K., Pereira, L.F.P., Vieira, L.G.E.: Genetic transformation of Coffea canephora by particle bombardment.-Biol. Plant. 49: 493–497, 2005.CrossRefGoogle Scholar
  15. Sijen, T., Fleeneor, J., Simmer, F., Thijssen, K.L., Parrish, S., Timmons, L., Plasterk, R.H., Fire, A.: On the role of RNA amplification in dsRNA-triggered gene silencing.-Cell 107: 465–476, 2001.PubMedCrossRefGoogle Scholar
  16. Singh, K., Raizada, J., Bhardwaj, P., Ghawana, S., Rani, A., Singh, H., Kaul, K., Kumar, S.: 26S rRNA-based internal control gene primer pair for reverse transcription-polymerase chain reaction-based quantitative expression studies in diverse plant species.-Anal Biochem 335: 330–333, 2004.PubMedCrossRefGoogle Scholar
  17. Smith, N.A., Singh, S.P., Wang, M.B., Stoutjesdijk, P.A., Green, A.G., Waterhouse, P.M.: Total silencing by intronspliced hairpin RNAs.-Nature 407: 319–320, 2000.PubMedCrossRefGoogle Scholar
  18. Stam, M., DeBruin, R., Kenter, S., Van der Hoorn, R.A.L., Van Blokland, R., Mol, J.N.M., Kooter, J.M.: Post-transcriptional silencing of chalcone synthase in Petunia by inverted transgene repeats.-Plant J. 12: 63–82, 1997.CrossRefGoogle Scholar
  19. Stoutjesdijk, P.A., Singh, S.P., Liu, Q., Hurlstone, C.J., Waterhouse, P.A., Green, A.G.: hp-RNA-mediated targeting of the Arabidopsis FAD2 gene gives highly efficient and stable silencing.-Plant Physiol. 129: 1723–1731, 2002.PubMedCrossRefGoogle Scholar
  20. Tang, G., Reinhart, B.J., Bartel, D.P., Zamore, P.D.: A biochemical framework for RNA silencing in plants.-Gene Dev. 17: 49–63, 2003.PubMedCrossRefGoogle Scholar
  21. Volohonsky, G., Tuby, C.N.Y.H., Porat, N., Rousseau, M.W., Visvikis, A., Leroy, P., Rashi, S., Steinberg, P., Stark, A.A.: A spectrophotometric assay of γ-glutamylcysteine synthetase and glutathione synthetase in crude extracts from tissues and cultured mammalian cells.-Chem.-Biol. Inter. 140: 49–65, 2002.CrossRefGoogle Scholar
  22. Wesley, S.V., Helliwell, C.A., Smith, N.A., Wang, M.B., Rouse, D.T., Liu, Q., Gooding, P.S., Singh, S.P., Abbott, D., Stoutjesdijk, P.A., Robinson, S.P., Gleave, A.P., Green, A.G., Waterhouse, P.M.: Construct design for efficient, effective and high-throughput gene silencing in plants.-Plant J. 27: 581–590, 2001.PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Praha 2008

Authors and Affiliations

  1. 1.Biotechnology DivisionInstitute of Himalayan Bioresource Technology (CSIR)PalampurIndia

Personalised recommendations