Biologia Plantarum

, Volume 52, Issue 1, pp 146–148 | Cite as

Micropropagation of Ailanthus altissima and in vitro heavy metal tolerance

  • E. GattiEmail author
Brief Communication


Ailanthus altissima, a fast-growing and contamination-resistant species is investigated for its use in areas contaminated by heavy metals. A micropropagation protocol for A. altissima was developed, cultured shoots were tested for in vitro heavy metals tolerance. Proliferation rate and shoot length were affected by 6-benzylaminopurine (BAP) and Murashige and Skoog’s (MS) salt concentrations, best results were obtained in full strength MS medium supplemented with 1.32 or 2.64 µM BAP. Rooting percentage was strongly influenced by indole-3-butyric acid. Cultures of A. altissima exposed to heavy metals demonstrated a tolerance comparable to species already utilized in phytoremediation.

Additional key words

shoot culture copper zinc manganese phytoremediation 





indole-3-butyric acid


3-indoleacetic acid


naphthalene-1-acetic acid


Murashige and Skoog’s (1962) medium


Shenk and Hildebrandt’s (1972) medium


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agraval, V., Sharma, K.: Phytotoxic effects of Cu, Zn, Cd and Pb on in vitro regeneration and concomitant protein changes in Holarrhena antidysenterica.-Biol. Plant. 50: 307–310, 2006.CrossRefGoogle Scholar
  2. Alcantara, E., Barra, R., Benlloch, M., Ginhas, A., Jorrin, J.M., Lopez, J.A., Lora, A., Ojeda, M.A., Pujadas, A., Requejo, R., Romera, J., Sancho, E.D., Shilev, S., and Tena, M.: Phytoremediation of a metal contaminated area in southern Spain.-Minerva Biotecnol. 13: 33–35, 2001.Google Scholar
  3. D’Silva, I., D’Souza, L.: Micropropagation of Ailanthus malabarica DC using juvenile and mature tree tissues.-Silvae Genet. 41: 333–339, 1992.Google Scholar
  4. Kalisová-Spirochová, I., Puncochárová, J., Kafka, Z.: Accumulation of heavy metals by in vitro cultures of plants.-Water Air Soil Poll.: 3: 269–276, 2003.CrossRefGoogle Scholar
  5. Knapp, L.B., Canham, C.D.: Invasion of an old-growth forest in New York by Ailanthus altissima: Sapling growth and recruitment in canopy gaps.-J. Torrey bot. Soc. 127: 307–331, 2000.CrossRefGoogle Scholar
  6. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures.-Physiol. Plant. 15: 473–497, 1962.CrossRefGoogle Scholar
  7. Natesha, S.R., Vijayakumar, N.K.: In vitro propagation of Ailanthus triphysa.-J. trop. Forest Sci. 16: 402–412, 2004.Google Scholar
  8. Pan, E., Bassuk, N.: Establishment and distribution of Ailanthus altissima in the urban environment.-J. Environ. Hort. 4: 1–4, 1986.Google Scholar
  9. Rockwood, D.L., Naidu C.V., Carter, D.R., Rahmani, M., Spriggs, T.A., Lin, C., Alker, G.R., Segrest, S.A.: Short-rotation woody crops and phytoremediation: Opportunities for agroforestry?-Agroforest. Syst. 61–62: 51–63, 2004.CrossRefGoogle Scholar
  10. Rout, G.R., Samantaray, S., Das, P.: In vitro selection and biochemical characterisation of zinc and manganese adapted callus lines in Brassica spp.-Plant Sci. 146: 89–100, 1999.CrossRefGoogle Scholar
  11. Shenk, B.U., Hildebrandt, C.: Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures.-Can. J. of Bot. 50: 199–204, 1972.CrossRefGoogle Scholar
  12. Watmough, S.A., Dickinson, N.M.: Multiple metal resistance and co-resistance in Acer pseudoplatanus L. (sycamore) callus cultures.-Ann. Bot. 76: 465–472, 1995.CrossRefGoogle Scholar
  13. Zenkteler, M., Stefaniak, B.: The de novo formation of buds and plantlets from various explants of Ailanthus altissima Mill. cultured in vitro.-Biol. Plant. 33: 332–341, 1991.CrossRefGoogle Scholar

Copyright information

© Institute of Experimental Botany, ASCR 2008

Authors and Affiliations

  1. 1.Istituto Biometeorologia IBIMET-CNRSezione di BolognaBolognaItaly

Personalised recommendations