Advertisement

Biologia Plantarum

, Volume 51, Issue 4, pp 601–617 | Cite as

The role of dehydrins in plant response to cold

  • K. KosováEmail author
  • P. Vítámvás
  • I. T. Prášil
Review

Abstract

Dehydrins present a distinct biochemical group of late embryogenesis abundant (LEA) proteins characterised by the presence of a lysine-rich amino acid motif, the K-segment. They are highly hydrophilic, soluble upon boiling, and rich in glycine and polar amino acids. It is proposed that they can act as emulsifiers or chaperones in the cells, i.e., they protect proteins and membranes against unfavourable structural changes caused by dehydration. Cold usually precedes freezing in nature and induces many physiological and biochemical changes in the cells of freezing-tolerant plant species (cold-acclimation) that enable them to survive unfavourable conditions. It is demonstrated that the induction of dehydrin expression and their accumulation is an important part of this process in many dicotyledons (both herbaceous and woody species), and also in winter cultivars of cereals, especially wheat and barley. Some mechanisms which are proposed to be involved in regulation of dehydrin expression are discussed, i.e., endogenous content of abscisic acid, homologues of Arabidopsis C-repeat binding factor (CBF) transcriptional activators, the activity of vernalization genes and photoperiodic signals. Finally, we outline some new approaches emerging for the solution of the complex mechanisms involved in plant cold-acclimation, especially the methods of functional genomics that enable to observe simultaneously changes in the activity of many genes and proteins in a single sample.

Additional key words

abscisic acid cereals cold-acclimation dicotyledons frost resistance K-segment LEA D-11 proteins low temperature stress 

Abbreviations

ABA

abscisic acid

ABRE

ABA-responsive element

bZIP

basic-domain leucine zipper

CaMV

cauliflower mosaic virus

CAT

catalase

CBF

C-repeat-binding factor

Cor

cold-regulated

CRT

C-repeat

Dhn

dehydrin

DRE

dehydration-responsive element

ELIPs

early light-inducible proteins

Erd

early response to drought

EST

expressed sequence tag

Fr gene

frost resistance gene

FT

frost tolerance

GUS

β-glucuronidase

LEA

late embryogenesis abundant

LD

long day

LDH

lactate dehydrogenase

LT

low temperature

LT50

lethal temperature when 50 % samples die

Lti

low temperature-induced

LTRE

low temperature-responsive element

Mr

relative molecular mass

NLS

nuclear localisation sequence

PD50

50 % protein denaturation

pI

isoelectric point

Ppd

photoperiod

QTL

quantitative trait loci

Rab

response to ABA

RT-PCR

reverse transcriptase polymerase chain reaction

SD

short day

SDS-PAGE

sodium dodecyl sulphate polyacrylamide gel electrophoresis

UV CD

ultra-violet circular dichroism

Vrn

vernalization

Wcor

wheat cold-regulated

Wcs

wheat cold-specific

Wdhn

wheat dehydrin

WT

wild type

2DE

two dimensional electrophoresis

2D-DIGE

two dimensional difference gel electrophoresis

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allagulova, C.R., Gimalov, F.R., Shakirova, F.M., Vakhitov, V.A.: The plant dehydrins: structure and putative functions.-Biochemistry 68: 945–951, 2003.PubMedGoogle Scholar
  2. Alsheikh, M.K., Heyen, B.J., Randall, S.K.: Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation.-J. biol. Chem. 278: 40882–40889, 2003.PubMedCrossRefGoogle Scholar
  3. Alsheikh, M.K., Svensson, J.T., Randall, S.K.: Phosphorylation regulated ion-binding is a property shared by the acidic subclass dehydrins.-Plant Cell Environ. 28: 1114–1122, 2005.CrossRefGoogle Scholar
  4. Amme, S., Matros, A., Schlesier, B., Mock, H.-P.: Proteome analysis of cold stress response in Arabidopsis thaliana using DIGE-technology.-J. exp. Bot. 57: 1537–1546, 2006.PubMedCrossRefGoogle Scholar
  5. Arora, R., Wisniewski, M.E.: Cold acclimation in genetically related (sibling) deciduous and evergreen peach (Prunus persica [L.] Batsch). II. A 60-kilodalton bark protein in cold-acclimated tissues of peach is heat stable and related to the dehydrin family of proteins.-Plant Physiol. 105: 95–101, 1994.PubMedCrossRefGoogle Scholar
  6. Artlip, T.S., Callahan, A.M., Basett, C.L., Wisniewski, M.E.: Seasonal expression of a dehydrin gene in sibling deciduous and evergreen genotypes of peach (Prunus persica [L.] Batsch.).-Plant mol. Biol. 33: 61–70, 1997.PubMedCrossRefGoogle Scholar
  7. Bassett, C.L., Wisniewski, M.E., Artlip, T.S., Norelli, J.L., Renaut, J., Farell, R.E., Jr.: Global analysis of genes regulated by low temperature and photoperiod in peach bark.-J. amer. Soc. hort. Sci. 131: 551–563, 2006.Google Scholar
  8. Baudo, M.M., Meza-Zepeda, L.A., Palva, E.T., Heino, P.: Induction of homologous low temperature and ABA-responsive genes in frost resistant (Solanum commersonii) and frost sensitive (Solanum tuberosum cv. Bintje) potato species.-Plant mol. Biol. 30: 331–336, 1996.PubMedCrossRefGoogle Scholar
  9. Bhattarai, T., Fettig, S.: Isolation and characterization of a dehydrin gene from Cicer pinnatifidum, a drought-resistant wild relative of chickpea.-Physiol. Plant. 123: 452–458, 2005.CrossRefGoogle Scholar
  10. Borovskii, G.B., Stupnikova, I.V., Antipina, A.I., Voinikov, V.K.: Accumulation of dehydrins and ABA-inducible proteins in wheat seedlings during low-temperature acclimation.-Russ. J. Plant Physiol. 49: 229–234, 2002.CrossRefGoogle Scholar
  11. Bravo, L.A., Close, T.J., Corcuera, L.J., Guy, C.L.: Characterization of an 80-kDa dehydrin-like protein in barley responsive to cold acclimation.-Physiol. Plant. 106: 177–183, 1999.CrossRefGoogle Scholar
  12. Bravo, L.A., Gallardo, J., Navarrete, A., Olave, N., Martínez, J., Alberdi, M., Close, T.J., Corcuera, L.J.: Cryoprotective activity of a cold-induced dehydrin purified from barley.-Physiol. Plant. 118: 262–269, 2003.CrossRefGoogle Scholar
  13. Buchanan, C.D., Lim, S.Y., Salzman, R.A., Kagiampakis, L., Morishige, D.T., Weers, B.D., Klein, R.R., Pratt, L.H., Cordonnier-Pratt, M.M., Klein, P.E., Mullet, J.E.: Sorghum bicolor’s transcriptome response to dehydration, high salinity and ABA.-Plant mol. Biol. 58: 699–720, 2005.PubMedCrossRefGoogle Scholar
  14. Cai, Q., Moore, G.A., Guy, C.L.: An unusual group 2 LEA gene family in citrus responsive to low temperature.-Plant mol. Biol. 29: 11–23, 1995.PubMedCrossRefGoogle Scholar
  15. Campbell, S.A., Close, T.J.: Dehydrins: genes, proteins, and associations with phenotypic traits.-New Phytol. 137: 61–74, 1997.CrossRefGoogle Scholar
  16. Chauvin, L.-P., Houde, M., Fowler, D.B.: Nucleotide sequence of a new member of the freezing tolerance-associated protein family in wheat.-Plant Physiol. 105: 1017–1018, 1994.PubMedCrossRefGoogle Scholar
  17. Choi, D.-W., Rodriguez, E.M., Close, T.J.: Barley Cbf3 gene identification, expression pattern, and map location.-Plant Physiol. 129: 1781–1787, 2002.PubMedCrossRefGoogle Scholar
  18. Choi, D.W., Werner-Fraczek, J., Fenton, R.D., Koag, M.C., Ahmadian, S., Malatrasi, M., Chin, A., Bravo, L.C., Close, T.J.: Genetic map locations and expression of the barley dehydrin multigene family.-Barley Genet. 8: 264–265, 2000.Google Scholar
  19. Choi, D.W., Zhu, B., Close, T.J.: The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv. Dicktoo.-Theor. appl. Genet. 98: 1234–1247, 1999.CrossRefGoogle Scholar
  20. Close, T.J.: Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins.-Physiol. Plant. 97: 795–803, 1996.CrossRefGoogle Scholar
  21. Close, T.J.: Dehydrins: a commonalty in the response of plants to dehydration and low temperature.-Physiol. Plant. 100: 291–296, 1997.CrossRefGoogle Scholar
  22. Close, T.J.: The barley microarray. A community vision and application to abiotic stress.-Czech J. Genet. Plant Breed. 41: 144–152, 2005.Google Scholar
  23. Close, T.J., Fenton, R.D., Moonan, F.: A view of plant dehydrins using antibodies specific to the carboxy terminal peptide.-Plant mol. Biol. 23: 279–286, 1993.PubMedCrossRefGoogle Scholar
  24. Close, T.J., Meyer, N.C., Radik, J.: Nucleotide sequence of a gene encoding a 58.5-kilodalton barley dehydrin that lacks a serine tract.-Plant Gene Register. Plant Physiol. 107: 289–290, 1995.Google Scholar
  25. Danyluk, J., Houde, M., Rassart, E., Sarhan, F.: Differential expression of a gene encoding an acidic dehydrin in chilling sensitive and freezing tolerant graminae species.-FEBS Lett. 344: 20–24, 1994.PubMedCrossRefGoogle Scholar
  26. Danyluk, J., Kane, N.A., Breton, G., Limin, A.E., Fowler, D.B., Sarhan, F.: TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals.-Plant Physiol. 132: 1849–1860, 2003.PubMedCrossRefGoogle Scholar
  27. Danyluk, J., Perron, A., Houde, M., Limin, A., Fowler, B., Benhamou, N., Sarhan, F.: Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat.-Plant Cell 10: 623–638, 1998.PubMedCrossRefGoogle Scholar
  28. Deng, Z.X., Pang, Y.Z., Kong, W.W., Chen, Z.H., Wang, X.L., Liu, X.J., Pi, Y., Sun, X.F.M., Tang, K.X.: A novel ABA-dependent dehydrin ERD10 gene from Brassica napus.-DNA sequence 16: 28–35, 2005.PubMedCrossRefGoogle Scholar
  29. Dhanaraj, A.L., Slovin, J.P., Rowland, L.J.: Isolation of a cDNA clone and characterization of expression of the highly abundant, cold acclimation-associated 14 kDa dehydrin of blueberry.-Plant Sci. 168: 949–957, 2005.CrossRefGoogle Scholar
  30. Egerton-Warburton, L.M., Balsamo, R.A., Close, T.J.: Temporal accumulation and ultrastructural localization of dehydrins in Zea mays.-Physiol. Plant. 101: 545–555, 1997.CrossRefGoogle Scholar
  31. Fan, Z.Q., Wang, X.R.: Isolation and characterization of a novel dehydrin gene from Capsella bursa-pastoris.-Mol. Biol. 40: 52–60, 2006.CrossRefGoogle Scholar
  32. Fowler, D.B., Breton, G., Limin, A.E., Mahfoozi, S., Sarhan, F.: Photoperiod and temperature interactions regulate low-temperature-induced gene expression in barley.-Plant Physiol. 127: 1676–1681, 2001.PubMedCrossRefGoogle Scholar
  33. Fowler, S., Thomashow, M.F.: Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway.-Plant Cell 14: 1675–1690, 2002.PubMedCrossRefGoogle Scholar
  34. Fu, P., Wilen, R.W., Wu, G.-H., Robertson, A.J., Gusta, L.V.: Dehydrin gene expression and leaf water potential differs between spring and winter cereals during cold acclimation.-J. Plant Physiol. 156: 394–400, 2000.Google Scholar
  35. Gilmour, S.J., Artus, N.N., Thomashow, M.T.: cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana.-Plant mol. Biol. 18: 13–21, 1992.PubMedCrossRefGoogle Scholar
  36. Gilmour, S.J., Fowler, S.G., Thomashow, M.F.: Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities.-Plant mol. Biol. 54: 767–781, 2004.PubMedCrossRefGoogle Scholar
  37. Gilmour, S.J., Sebolt, A.M., Salazar, M.P., Everard, J.D., Thomashow, M.F.: Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation.-Plant Physiol. 124: 1854–1865, 2000.PubMedCrossRefGoogle Scholar
  38. Gulick, P.J., Drouin, S., Yu, Z., Danyluk, J., Poisson, G., Monroy, A.F., Sarhan, F.: Transcriptome comparison of winter and spring wheat responding to low temperature.-Genome 48: 913–923, 2005.PubMedGoogle Scholar
  39. Guo, W., Ward, R.W., Thomashow, M.F.: Characterization of a cold-regulated wheat gene related to Arabidopsis Cor47.-Plant Physiol. 100: 915–922, 1992.PubMedGoogle Scholar
  40. Guy, C.L.: Cold acclimation and freezing stress tolerance: role of protein metabolism.-Annu. Rev. Plant Physiol. Plant mol. Biol. 41: 187–223, 1990.Google Scholar
  41. Hannah, M.A., Heyer, A.G., Hincha, D.K.: A global survey of gene regulation during cold acclimation in Arabidopsis thaliana.-PloS. Genet. 1: e26, 2005.PubMedCrossRefGoogle Scholar
  42. Hara, M., Fujinaga, M., Kuboi, T.: Radical scavenging activity and oxidative modification of citrus dehydrin.-Plant Physiol. Biochem. 42: 657–662, 2004.PubMedCrossRefGoogle Scholar
  43. Hara, M., Fujinaga, M., Kuboi, T.: Metal binding by citrus dehydrin with histidine-rich domains.-J. exp. Bot. 56: 2695–2703, 2005.PubMedCrossRefGoogle Scholar
  44. Hara, M., Terashima, S., Fukaya, T., Kuboi, T.: Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco.-Planta 203: 290–298, 2003.Google Scholar
  45. Hara, M., Terashima, S., Kuboi, T.: Characterization and cryoprotective activity of cold-responsive dehydrin from Citrus unshiu.-J. Plant Physiol. 158: 1333–1339, 2001.CrossRefGoogle Scholar
  46. Hara, M., Wakasugi, Y., Jokma, Y., Yano, M., Ogawa, K., Kuboi, T.: cDNA sequence and expression of a cold-responsive gene in Citrus unshiu.-Biosci. Biotechnol. Biochem. 63: 433–437, 1999.PubMedCrossRefGoogle Scholar
  47. Houde, M., Dallaire, S., N’Dong, D., Sarhan, F.: Over-expression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves.-Plant biotechnol. J. 2: 381–387, 2004.PubMedCrossRefGoogle Scholar
  48. Houde, M., Daniel, C., Lachapelle, M., Allard, F., Laliberté, S., Sarhan, F.: Immunolocalization of freezing-tolerance associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues.-Plant J. 8: 583–593, 1995.PubMedCrossRefGoogle Scholar
  49. Houde, M., Danyluk, J., Laliberte, J.-F., Rassart, E., Dhindsa, R.S., Sarhan, F.: Cloning, characterization, and expression of a cDNA encoding a 50 kilodalton protein specifically induced by cold acclimation in wheat.-Plant Physiol. 99: 1381–1387, 1992.PubMedCrossRefGoogle Scholar
  50. Ingram, J., Bartels, D.: The molecular basis of dehydration tolerance in plants.-Annu. Rev. Plant Physiol. Plant mol. Biol. 47: 377–403, 1996.PubMedCrossRefGoogle Scholar
  51. Ismail, A.M., Hall, A.E., Close, T.J.: Purification and partial characterization of a dehydrin involved in chilling tolerance during seedling emergence of cowpea.-Plant Physiol. 120: 237–244, 1999a.PubMedCrossRefGoogle Scholar
  52. Ismail, A.M., Hall, A.E., Close, T.J.: Allelic variation of a dehydrin gene cosegregates with chilling tolerance during seedling emergence.-Proc. nat. Acad. Sci. USA 96: 13566–13570, 1999b.PubMedCrossRefGoogle Scholar
  53. Israelachvili, J., Wennerström, H.: Role of hydration and water structure in biological and colloidal interactions.-Nature 379: 219–225, 1996.PubMedCrossRefGoogle Scholar
  54. Iwasaki, T., Kiyosue, T., Yamaguchi-Shinozaki, K., Shinozaki, K.: The dehydration-inducible Rd17 (Cor47) gene and its promoter region in Arabidopsis thaliana (Accession No. AB004872).-Plant Gene Register. Plant Physiol. 115: 1287–1289, 1997.Google Scholar
  55. Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O., Thomashow, M.F.: Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance.-Science 280: 104–106, 1998.PubMedCrossRefGoogle Scholar
  56. Jarvis, S.B., Taylor, M.A., MacLeod, M.R., Davies, H.V.: Cloning and characterisation of the cDNA clones of three genes that are differentially expressed during dormancy-breakage in the seeds of Douglas fir (Pseudotsuga menziesii).-J. Plant Physiol. 147: 559–566, 1996.Google Scholar
  57. Kalberer, S.R., Wisniewski, M., Arora, R.: Deacclimation and reacclimation of cold-hardy plants: current understanding and emerging concepts.-Plant Sci. 171: 3–16, 2006.CrossRefGoogle Scholar
  58. Kirch, H.-H., Van Berkel, J., Glaczinski, H., Salamini, F., Gebhardt, C.: Structural organization, expression and promoter activity of a cold-stress-inducible gene of potato (Solanum tuberosum L.).-Plant mol. Biol. 33: 897–909, 1997.PubMedCrossRefGoogle Scholar
  59. Kiyosue, T., Yamaguchi-Shinozaki, K., Shinozaki, K.: Characterization of two cDNAs (ERD10 and ERD14) corresponding to genes that respond rapidly to dehydration stress in Arabidopsis thaliana.-Plant Cell Physiol. 35: 225–231, 1994.PubMedGoogle Scholar
  60. Koag, M.-C., Fenton, R., Wilkens, S., Close, T.J.: The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity.-Plant Physiol. 131: 309–316, 2003.PubMedCrossRefGoogle Scholar
  61. Kobayashi, F., Takumi, S., Kume, S., Ishibashi, M., Ohno, R., Murai, K., Nakamura, C.: Regulation by Vrn-1/Fr-1 chromosomal intervals of CBF-mediated Cor/Lea gene expression and freezing tolerance in common wheat.-J. exp. Bot. 56: 887–895, 2005.PubMedCrossRefGoogle Scholar
  62. Kontunen-Soppela, S., Taulavuori, K., Taulavuori, E., Lähdesmäki, P., Laine, K.: Soluble proteins and dehydrins in nitrogen-fertilized Scots pine seedlings during deacclimation and the onset of growth.-Physiol. Plant. 109: 404–409, 2000.CrossRefGoogle Scholar
  63. Kumar, A., Bhatla, S.C.: Polypeptide markers for low temperature stress during seed germination in sunflower.-Biol. Plant. 50: 81–86, 2006.CrossRefGoogle Scholar
  64. Lang, V., Mantyla, E., Welin, B., Sundberg, B., Palva, E.T.: Alterations in water status, endogenous abscisic acid content, and expression of rab18 gene during the development of freezing tolerance in Arabidopsis thaliana.-Plant Physiol. 104: 1341–1349, 1994.PubMedGoogle Scholar
  65. Lang, V., Palva, E.T.: The expression of a Rab-related gene, Rab18, is induced by abscisic acid during the cold-acclimation process of Arabidopsis thaliana (L.) Heynh.-Plant mol. Biol. 20: 951–962, 1992.PubMedCrossRefGoogle Scholar
  66. Lee, S.C., Lee, M.Y., Kim, S.J., Jun, S.H., An, G., Kim, S.R.: Characterization of an abiotic stress-inducible dehydrin gene, OsDhn1, in rice (Oryza sativa L.).-Mol. Cells 19: 212–218, 2005.PubMedGoogle Scholar
  67. Levi, A., Panta, G.R., Parmentier, C.M., Muthalif, M.M., Arora, R., Shanker, S., Rowland, L.J.: Complementary DNA cloning, sequencing and expression of an unusual dehydrin from blueberry floral buds.-Physiol. Plant. 107: 98–109, 1999.CrossRefGoogle Scholar
  68. Lim, C.C., Krebs, S.L., Arora, R.: A 25-kDa dehydrin associated with genotype-and age-dependent leaf freezing tolerance in Rhododendron: a genetic marker for cold hardiness?-Theor. appl. Genet. 99: 912–920, 1999.CrossRefGoogle Scholar
  69. Limin, A.E., Danyluk, J., Chauvin, L.-P., Fowler, D.B., Sarhan, F.: Chromosome mapping of low-temperature induced Wcs120 family genes and regulation of cold-tolerance expression in wheat.-Mol. gen. Genet. 253: 720–727, 1997.PubMedCrossRefGoogle Scholar
  70. Marian, C.O., Krebs, S.L., Arora, R.: Dehydrin variability among Rhododendron species: a 25-kDa dehydrin is conserved and associated with cold acclimation across diverse species.-New Phytol. 161: 773–780, 2003.CrossRefGoogle Scholar
  71. Maruyama, K., Sakuma, Y., Kasuga, M., Ito, Y., Seki, M., Goda, H., Shimada, Y., Yoshida, S., Shinozaki, K., Yamaguchi-Shinozaki, K.: Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems.-Plant J. 38: 982–993, 2004.PubMedCrossRefGoogle Scholar
  72. Monroy, A.F., Castonguay, Y., Laberge, S., Sarhan, F., Vezina, L.P., Dhindsa, R.S.: A new cold-induced alfalfa gene is associated with enhanced hardening at subzero temperature.-Plant Physiol. 102: 873–879, 1993.PubMedCrossRefGoogle Scholar
  73. Muthalif, M.M., Rowland, L.J.: Identification of dehydrin-like proteins responsive to chilling in floral buds of blueberry (Vaccinium section Cyanococcus).-Plant Physiol. 104: 1439–1447, 1994.PubMedCrossRefGoogle Scholar
  74. Neven, L.G., Haskell, D.W., Hofig, A., Li, Q.B., Guy, C.L.: Characterization of a spinach gene responsive to low temperature and water stress.-Plant mol. Biol. 21: 291–305, 1993.PubMedCrossRefGoogle Scholar
  75. Nylander, M., Svensson, J., Palva, E.T., Wellin, B.V.: Stress-induced accumulation and tissue-specific localisation of dehydrins in Arabidopsis thaliana.-Plant mol. Biol. 45: 263–279, 2001.PubMedCrossRefGoogle Scholar
  76. Ohno, R., Takumi, S., Nakamura, C.: Kinetics of transcript and protein accumulation of a low-molecular-weight wheat LEA D-11 dehydrin in response to low temperature.-J. Plant Physiol. 160: 193–200, 2003.PubMedCrossRefGoogle Scholar
  77. Parmentier-Line, C.M., Panta, G.R., Rowland, L.J.: Changes in dehydrin expression associated with cold, ABA and PEG treatments in blueberry cell cultures.-Plant Sci. 162: 273–282, 2002.CrossRefGoogle Scholar
  78. Porat, R., Pasentsis, K., Rozentzvieg, D., Gerasopoulos, D., Falara, V., Samach, A., Lurie, S., Kanellis, A.K.: Isolation of a dehydrin cDNA from orange and grapefruit citrus fruit that is specifically induced by the combination of heat followed by chilling temperatures.-Physiol. Plant. 120: 256–264, 2004.PubMedCrossRefGoogle Scholar
  79. Porat, R., Pavoncello, D., Lurie, S., McCollum, T.G.: Identification of a grapefruit cDNA belonging to a unique class of citrus dehydrins and characterization of its expression patterns under temperature stress conditions.-Physiol. Plant. 115: 598–603, 2002.PubMedCrossRefGoogle Scholar
  80. Prášil, I.T., Prášilová, P., Pánková, K.: Relationships among vernalization, shoot apex development and frost tolerance in wheat.-Ann. Bot. 94: 413–418, 2004.PubMedCrossRefGoogle Scholar
  81. Prášil, I.T., Prášilová, P., Pánková, K.: The relationship between vernalization requirement and frost tolerance in substitution lines of wheat.-Biol. Plant. 49: 195–200, 2005.CrossRefGoogle Scholar
  82. Puhakainen, T., Hess, M.V., Makela, P., Svensson, J., Heino, P., Palva, E.T.: Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis.-Plant mol. Biol. 54: 743–753, 2004a.PubMedCrossRefGoogle Scholar
  83. Puhakainen, T., Li, C., Malm, M.-B., Kangasjarvi, J., Heino, P., Palva, T.: Short-day potentiation of low temperature-induced gene expression of a C-repeat-binding factor-controlled gene during cold acclimation in silver birch.-Plant Physiol. 136: 4299–4307, 2004b.PubMedCrossRefGoogle Scholar
  84. Quellet, F., Houde, M., Sarhan, F.: Purification, characterization and cDNA cloning of the 200 kDa protein induced by cold acclimation in wheat.-Plant Cell Physiol. 34: 59–65, 1993.Google Scholar
  85. Rampino, P., Pataleo, S., Gerardi, C., Mita, G., Perrotta, C.: Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes.-Plant Cell Environ. 29: 2143–2152, 2006.PubMedCrossRefGoogle Scholar
  86. Renault, J., Hausman, J.-F., Wisniewski, M.E.: Proteomics and low-temperature studies: bridging the gap between gene expression and metabolism.-Physiol. Plant. 126: 97–109, 2006.CrossRefGoogle Scholar
  87. Renault, J., Hoffmann, L., Hausman, J.-F.: Biochemical and physiological mechanisms related to cold acclimation and enhanced freezing tolerance in poplar plantlets.-Physiol. Plant. 125: 82–94, 2005.CrossRefGoogle Scholar
  88. Richard, S., Morency, M.-J., Drevet, C., Jouanin, L., Seguin, A.: Isolation and characterization of a dehydrin gene from white spruce induced upon wounding, drought and cold stresses.-Plant mol. Biol. 43: 1–10, 2000.PubMedCrossRefGoogle Scholar
  89. Rinne, P.L.H., Kaikuranta, P.L.M., van der Plas, L.H.W., van der Schoot, C.: Dehydrins in cold-acclimated apices of birch (Betula pubescens Ehrh.): production, localization and potential role in rescuing enzyme function during dehydration.-Planta 209: 377–388, 1999.PubMedCrossRefGoogle Scholar
  90. Rodriguez, E.M., Svensson, J.T., Malatrasi, M., Choi, D.-W., Close, TJ.: Barley Dhn13 encodes a KS-type dehydrin with constitutive and stress responsive expression.-Theor. appl. Genet. 110: 852–858, 2005.PubMedCrossRefGoogle Scholar
  91. Rorat, T., Grygorowicz, W.J., Irzykowski, W., Rey, P.: Expression of KS-type dehydrins is primarily regulated by factor related to organ type and leaf developmental stage during vegetative growth.-Planta 218: 878–885, 2004.PubMedCrossRefGoogle Scholar
  92. Rorat, T., Szabala, B.M., Grygorowicz, W.J., Wojtowicz, B., Yin, Z., Rey, P.: Expression of SK3-type dehydrin in transporting organs is associated with cold acclimation in Solanum species.-Planta 224: 205–221, 2006.PubMedCrossRefGoogle Scholar
  93. Rouse, D.T., Marotta, R., Parish, R.W.: Promoter and expression studies on an Arabidopsis thaliana dehydrin gene.-FEBS Lett. 381: 252–256, 1996.PubMedCrossRefGoogle Scholar
  94. Sakai, A., Larcher, W.: Frost Survival of Plants. Responses and Adaptation to Freezing Stress.-Springer-Verlag Berlin-Heidelberg-New York-London-Paris-Tokyo 1987.Google Scholar
  95. Sarhan, F., Danyluk, J.: Engineering cold-tolerant crops-throwing the master switch.-Trends Plant Sci. 3: 289–290, 1998.CrossRefGoogle Scholar
  96. Sarhan, F., Ouellet, F., Vazquez-Tello, A.: The wheat wcs120 gene family. A useful model to understand the molecular genetics of freezing tolerance in cereals.-Physiol. Plant. 101: 439–445, 1997.CrossRefGoogle Scholar
  97. Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Taji, T., Yamaguchi-Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y., Shinozaki, K.: Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray.-Plant J. 31: 279–292, 2002.PubMedCrossRefGoogle Scholar
  98. Stupnikova, I.V., Borovskii, G.B., Antipina, A.I., Voinikov, V.K.: Polymorphism of thermostable proteins in soft wheat seedlings during low-temperature acclimation.-Russ. J. Plant Physiol. 48: 804–809, 2001.CrossRefGoogle Scholar
  99. Stupnikova, I.V., Borovskii, G.B., Dorofeev, N.V., Peshkova, A.A., Voinikov, V.K.: Accumulation and disappearance of dehydrins and sugars depending on freezing tolerance of winter wheat plants at different developmental phases.-J. therm. Biol. 27: 55–60, 2002.CrossRefGoogle Scholar
  100. Svensson, J., Ismail, A., Palva, E.T., Close, T.J.: Dehydrins.-In: Storey, K.B., Storey, J.M. (ed.): Sensing, Signalling and Cell Adaptation. Pp. 155–171. Elsevier Science, Amsterdam 2002.CrossRefGoogle Scholar
  101. Thomashow, M.F.: Plant cold acclimation: freezing tolerance genes and regulatory mechanisms.-Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 571–599, 1999.PubMedCrossRefGoogle Scholar
  102. Van Zee, K., Chen, F.Q., Hayes, P.M., Close, TJ., Chen, T.H.H.: Cold-specific induction of a dehydrin gene family member in barley.-Plant Physiol. 108: 1233–1239, 1995.PubMedGoogle Scholar
  103. Vazquez-Tello, A., Quellet, F., Sarhan, F.: Low temperature-stimulated phosphorylation regulates the binding of nuclear factor to the promoter of Wcs120, a cold-specific gene in wheat.-Mol. gen. Genet. 257: 157–166, 1998.PubMedCrossRefGoogle Scholar
  104. Velten, J., Oliver, M.J.: Tr288, a rehydrin with a dehydrin twist.-Plant mol. Biol. 45: 713–722, 2001.PubMedCrossRefGoogle Scholar
  105. Vítámvás, P., Saalbach, G., Prášil, I.T., Čapková, V., Opatrná, J., Jahoor, A.: WCS120 protein family and proteins soluble upon boiling in cold-acclimated winter wheat.-J. Plant Physiol., in press, 2007.Google Scholar
  106. Wahid, A., Close, T.J.: Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves.-Biol. Plant. 51: 104–109, 2007.CrossRefGoogle Scholar
  107. Wei, H., Fu, Y., Arora, R.: Intron-flanking EST-PCR markers: from genetic marker development to gene structure analysis in Rhododendron.-Theor. appl. Genet. 111: 1347–1356, 2005.PubMedCrossRefGoogle Scholar
  108. Wellin, B.V., Olson, A., Nylander, M., Palva, E.T.: Characterization and differential expression of Dhn/Lea/Rab-like genes during cold acclimation and drought stress in Arabidopsis thaliana.-Plant mol. Biol. 26: 131–144, 1994.CrossRefGoogle Scholar
  109. Wellin, B.V., Olson, A., Palva, E.T.: Structure and organization of two closely-related low-temperature-induced Dhn/Lea/Rab-like genes in Arabidopsis thaliana (L.) Heynh.-Plant mol. Biol. 29: 391–395, 1995.CrossRefGoogle Scholar
  110. Welling, A., Moritz, T., Palva, E.T., Juntilla, O.: Independent activation of cold acclimation by low temperature and short photoperiod in hybrid aspen.-Plant Physiol. 129: 1633–1641, 2002.PubMedCrossRefGoogle Scholar
  111. Welling, A., Palva, T.: Molecular control of cold acclimation in trees.-Physiol. Plant. 127: 167–181, 2006.CrossRefGoogle Scholar
  112. Welling, A., Rinne, P., Vihera-Aarnio, A., Kontunen-Soppela, S., Heino, P., Palva, E.T.: Photoperiod and temperature differentially regulate the expression of two dehydrin genes during overwintering of birch (Betula pubescens Ehrh.).-J. exp. Bot. 55: 507–516, 2004.PubMedCrossRefGoogle Scholar
  113. Wisniewski, M., Close, T.J., Artlip, T., Arora, R.: Seasonal patterns of dehydrins and 70-kDa heat-shock proteins in bark tissues of eight species of woody plants.-Physiol. Plant. 96: 496–505, 1996.CrossRefGoogle Scholar
  114. Wisniewski, M., Webb, R., Balsamo, R., Close, T.J., Yu, X.-M., Griffith, M.: Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: a dehydrin from peach (Prunus persica).-Physiol. Plant. 105: 600–608, 1999.CrossRefGoogle Scholar
  115. Wolfraim, L.A., Langis, R., Tyson, H., Dhindsa, R.S.: cDNA sequence, expression, and transcript stability of a cold acclimation-specific gene, cas18, of alfalfa (Medicago falcata) cells.-Plant Physiol. 101: 1275–1282, 1993.PubMedCrossRefGoogle Scholar
  116. Yakubov, B., Barazani, O., Shachack, A., Rowland, L.J., Shoseyov, O., Golan-Goldhirsh, A.: Cloning and expression of a dehydrin-like protein from Pistacia vera L.-Trees 19: 224–230, 2005.CrossRefGoogle Scholar
  117. Yang, T., Zhang, L., Zhang, T., Zhang, H., Xu, S., An, L.: Transcriptional regulation network of cold-responsive genes in higher plants.-Plant Sci. 169: 987–995, 2005.CrossRefGoogle Scholar
  118. Yao, K., Lockhart, K.M., Kalanack, J.J.: Cloning of dehydrin sequences from Brassica juncea and Brassica napus and their low temperature-inducible expression in germinating seeds.-Plant Physiol. Biochem. 43: 83–89, 2005.PubMedCrossRefGoogle Scholar
  119. Yin, Z., Rorat, T., Szabala, B.M., Ziolkowska, A., Malepszy, S.: Expression of a Solanum sogarandinum SK3-type dehydrin enhances cold tolerance in transgenic cucumber seedlings.-Plant Sci. 170: 1164–1172, 2006.CrossRefGoogle Scholar
  120. Zhu, B., Choi, D.-W., Fenton, R., Close, T.J.: Expression of the barley dehydrin multigene family and the development of freezing tolerance.-Mol. gen. Genet. 264: 145–153, 2000.PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Experimental Botany, ASCR 2007

Authors and Affiliations

  1. 1.Research Institute of Crop ProductionPragueCzech Republic
  2. 2.Faculty of ScienceCharles UniversityPragueCzech Republic

Personalised recommendations