Biologia Plantarum

, 51:559 | Cite as

Photosynthesis and nutrient composition of spinach and fenugreek grown under elevated carbon dioxide concentration

  • V. Jain
  • M. Pal
  • A. Raj
  • S. Khetarpal
Brief Communication


The effect of elevated carbon dioxide concentration on the changes in the biomass, photosynthesis and nutrient composition was investigated in two leafy vegetables. Spinach (Spinacia oleracea L.) and fenugreek (Trigonella foenum-graecum L.) plants were grown in open top chambers under either ambient (ACO2, 350 ± 50 µmol mol−1) or elevated (ECO2, 600 ± 50 µmol mol−1) CO2 concentration and analyzed 40, 60 and 80 days after exposure. The plants grown in ECO2 had higher net photosynthetic rate and lower stomatal conductance when compared with the plants grown in ACO2. ECO2 also changed the nutrient composition: a lower N, Mg and Fe contents and higher C and Ca contents were observed in the leaves of plants exposed to ECO2 than in those grown at ACO2.

Additional key words

calcium iron magnesium net photosynthetic rate nitrate reductase stomatal conductance 



ambient CO2


days after exposure


elevated CO2


stomatal conductance


net photosynthetic rate


  1. Aben, S.K., Ghannown, O., Conroy, J.P.: Nitrogen requirements for maximum growth and photosynthesis of rice (Oryza sativa L.) cv. Jarrah grown at 36 and 70 Pa CO2.-Aust. J. Plant Physiol. 26: 759–766, 1999.Google Scholar
  2. Baxter, R., Gantley, M., Ashenden, T.W., Farrar, J. F.: Effects of elevated CO2 on three grass species from montane pasture. II. Nutrient uptake, allocation and efficiency of use.-J. exp. Bot. 45: 1267–1278, 1994.CrossRefGoogle Scholar
  3. Bhargava, B.S., Raghupati, H.B.: Analysis of plant materials for macro and micronutrients.-In: Tandon, H.L.S. (ed.): Methods of Analysis of Soils, Plants, Water and Fertilizers. Pp. 49–82. Fertilizer Development Consultation Organization, New Delhi 1993.Google Scholar
  4. Centritto, M., Lee, H., Jarvis, P.G.: Long-term effects of elevated carbon dioxide concentration and provenance on four clones of Sitka spruce (Picea sitchensis). Plant growth, allocation and ontogeny.-Tree Physiol. 19: 799–806, 1999.PubMedGoogle Scholar
  5. Centritto, M., Lucas, M.E., Jarvis, P.G.: Gas exchange, biomass, whole plant water use efficiency and water uptake of peach (Prunus persica) seedlings in response to elevated carbon dioxide concentration and water availability.-Tree Physiol. 22: 699–706, 2002.PubMedGoogle Scholar
  6. Coleman, J.S., Mc Connaughay, K.D.M., Bazzaz, F.A.: Elevated CO2 and plant nitrogen use, is reduced tissue nitrogen concentration size dependent?-Oecologia 93: 195–200, 1993.CrossRefGoogle Scholar
  7. Conroy, J.P.: Influence of elevated atmospheric CO2 concentrations on plant nutrition.-Aust. J. Bot. 40: 445–456, 1992.Google Scholar
  8. Drake, B.G., Gonzalez Melar, M.A., Long, S.P.: More efficient plants: a consequence of rising atmospheric CO2.-Annu. Rev. Plant Physiol. Plant mol. Biol. 48: 609–639, 1997.PubMedCrossRefGoogle Scholar
  9. Farage, P.K., McKee, I.F., Long, S.P.: Does a low nitrogen supply necessarily lead to acclimation of photosynthesis to elevated CO2?-Plant Physiol. 118: 573–580, 1998.CrossRefPubMedGoogle Scholar
  10. Gifford, R.M., Barrett, D.J., Lutze, J.L.: The effect of elevated CO2 on C:N and C:P mass ratio of plant tissues.-Plant Soil 224: 1–14, 2000.CrossRefGoogle Scholar
  11. Moynul Haque, M., Hamid, A., Khanam, M., Biswas, D.K., Karim, M.A., Khaliq, Q.A., Hossain, M.A., Uprety, D.C.: The effect of elevated CO2 concentration on leaf chlorophyll and nitrogen contents in rice during post-flowering phases.-Biol. Plant. 50: 69–73, 2006.CrossRefGoogle Scholar
  12. Pal, M., Karthikeyapandian, V., Jain, V., Srivastava, A.C., Raj, A., Sengupta, U.K.: Biomass production and nutritional levels of berseem (Trifolium alexandrium) grown under elevated CO2.-Agr. Ecosyst. Environ. 101: 31–38, 2004.CrossRefGoogle Scholar
  13. Pal, M., Rao, L.S., Jain, V., Srivastava, A.C., Pandey, R., Raj, A., Singh, K. P.: Effects of elevated CO2 and nitrogen on wheat growth and photosynthesis.-Biol. Plant. 49: 467–470, 2005.CrossRefGoogle Scholar
  14. Pal, M., Rao, L.S., Srivastava, A.C., Jain, V., Sengupta, U.K.: Impact of CO2 enrichment and variable nitrogen supplies on composition and partitioning of essential nutrients of wheat.-Biol. Plant. 47: 227–231, 2003/4.CrossRefGoogle Scholar
  15. Panse, V.G., Sukhatme, P.T.: Statistical Methods for Agricultural Research Workers.-Indian Council of Agricultural Research, New Delhi 1967.Google Scholar
  16. Reeves, D.W., Rogers, H.H., Prior, S.A., Wood, C.W., Runion, G.B.: Elevated atmospheric CO2 effects on sorghum and soybean nutrient status.-J. Plant Nutr. 17: 1939–1954, 1994.CrossRefGoogle Scholar
  17. Rogers, G.S., Milham, P.J., Thibaud, M.C., Conroy, J.P.: Interaction between rising CO2 concentration and nitrogen supply in cotton. I. Growth and leaf nitrogen concentration.-Aust. J. Plant Physiol. 23: 119–125, 1996.CrossRefGoogle Scholar
  18. Sage, R.F., Sharkey, T.D., Seemann, J.R.: Acclimation of photosynthesis to elevated CO2 in five C3 species.-Plant Physiol. 89: 590–596, 1989.PubMedGoogle Scholar
  19. Schaffer, B., Whiley, A.W., Searle, C., Nissen, R.J.: Leaf gas exchange, dry matter partitioning and mineral element concentrations in mango as influenced by elevated CO2 and root restriction.-J. amer. Soc. hort. Sci. 122: 849–855, 1997.Google Scholar
  20. Schortemeyer, M., Atkin, O.K., McFarlane, N., Evans, J.R.: The impact of elevated CO2 and nitrate supply on growth, biomass allocation, nitrogen partitioning and nitrogen fixation of Acacia melanoxylon.-Aust. J. Plant Physiol. 26: 737–747, 1999.Google Scholar
  21. Sharma, A., Sengupta, U.K.: Carbon dioxide enrichment effect on photosynthesis and related enzymes in Vigna radiata Wilczek.-Indian J. Plant Physiol. 33: 340–346, 1990.Google Scholar
  22. Stitt, M., Krapp, A.: The interaction between elevated CO2 and nitrogen nutrition: the physiological and molecular background.-Plant Cell Environ. 22: 583–621, 1999.CrossRefGoogle Scholar
  23. Uprety, D.C., Diwedi, N., Jain, V., Mohan, R.: Effect of elevated carbon dioxide on stomatal parameters of rice cultivars.-Photosynthetica 40: 315–319, 2002.CrossRefGoogle Scholar
  24. Uprety, D.C., Diwedi, N., Jain, V., Mohan, R., Saxena, D.C., Jolly, M., Paswan, G.: Responses of rice varieties to elevated CO2.-Biol. Plant. 46: 35–39, 2003.CrossRefGoogle Scholar
  25. Uprety, D.C., Mahalaxmi, V.: Effect of elevated CO2 and nitrogen nutrition on photosynthesis, growth and carbon nitrogen balance in Brassica juncea.-J. Agron. Crop Sci. 184: 271–276, 2000.CrossRefGoogle Scholar
  26. Van Ginkel, J.H., Gorrissen, A., Van Veen, A.: Carbon and nitrogen allocation in Lolium perenne in response to elevated CO2 with emphasis on soil carbon dynamics.-Plant Soil 188: 299–308, 1997.CrossRefGoogle Scholar
  27. Walkley, A., Black, C.A.: An examination of de Gjareff methods for determining soil organic matter and proposed modification of the chromic acid titration method.-Soil Sci. 37: 29–38, 1934.CrossRefGoogle Scholar

Copyright information

© Institute of Experimental Botany, ASCR 2007

Authors and Affiliations

  1. 1.Indian Agricultural Research InstituteDivision of Plant PhysiologyNew DelhiIndia

Personalised recommendations