Biologia Plantarum

, 51:546 | Cite as

Cadmium mitigates ultraviolet-B stress in Anabaena doliolum: Enzymatic and non-enzymatic antioxidants

  • P. Bhargava
  • N. Atri
  • A. K. Srivastava
  • L. C. Rai
Brief Communication


Impact of ultraviolet-B (UV-B) and Cd, applied individually and in combination, measured in terms of oxygen-evolution, chlorophyll (Chl) and protein contents, lipid peroxidation, and enzymatic and non-enzymatic antioxidants of Anabaena doliolum, revealed a greater oxidative damage induced by UV-B than by Cd. While superoxide dismutase (SOD) showed a greater stimulation by UV-B than Cd, the activities of catalase (CAT) and glutathione reductase (GR) declined after UV-B treatment. Cd treatment, however, enhanced the activities of ascorbate peroxidase (APX) and GR. CAT activity increased at low but decreased at high dose of Cd. Increase in carotenoid (Car) content in UV-B treated cells suggested a shielding effect of Car against UV-B stress. A 15-and 10-fold rise in α-tocopherol (α-TOC) content at high dose of Cd and/or UV-B offered testimony to the antioxidant role of α-TOC.

Additional key words

α-tocopherol ascorbate antioxidative defence system carotenoids chlorophyll oxidative damage 





ascorbate peroxidase










glutathione reduced


glutathione reductase




photosynthetically active radiation


reactive oxygen species


superoxide dismutase


ultraviolet B radiation


  1. Aebi, H.: Catalase in vitro.-Methods Enzymol. 105: 121–126, 1984.PubMedCrossRefGoogle Scholar
  2. Allen, M.B., Arnon, D.I.: Studies on the nitrogen fixing blue green algae. I. Growth and nitrogen fixation by Anabaena cylindrica Lemm.-Plant Physiol. 30: 366–372, 1955.PubMedGoogle Scholar
  3. Anderson, M.E.: Determination of glutathione and glutathione disulphide in biological samples.-Methods Enzymol. 113: 548–555, 1985.PubMedGoogle Scholar
  4. Asada, K.: The water-water cycle in chloroplasts: Scavenging of active oxygen and dissipation of excess photons.-Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 601–639, 1999.PubMedCrossRefGoogle Scholar
  5. Beyer, R.E.: The role of ascorbate in antioxidant protection of biomolecules: interaction with vitamin E and coenzyme Q.-J. Bioenerg. Biomemb. 26: 349–358, 1994.CrossRefGoogle Scholar
  6. Bradford, M.M.: A rapid and sensitive method for the quantification of microgram quantity of proteins utilising the principle of protein dye binding.-Anal. Biochem. 72: 248–254, 1976.PubMedCrossRefGoogle Scholar
  7. Cakmak, I., Horst, J.: Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean (Glycine max).-Physiol. Plant. 83: 463–468, 1991.CrossRefGoogle Scholar
  8. Campos, J.L., Figueras, X., Piñol, M.T., Boronat, A., Tiburcio, A.F.: Carotenoid and conjugated polyamine levels as indicators of ultraviolet-C induced stress in Arabidopsis thaliana.-Photochem. Photobiol. 53: 689–693, 1991.CrossRefGoogle Scholar
  9. Ehling-Schulz, M., Scherer, S.: UV-B protection in cyanobacteria.-Eur. J. Phycol. 34: 329–338, 1999.CrossRefGoogle Scholar
  10. Gianopolitis, C.N., Ries, S.K.: Superoxide dismutase. 1. Occurrence in higher plants.-Plant Physiol. 59: 309–314, 1977.CrossRefGoogle Scholar
  11. Hernandez, J.A., Almansa, M.S.: Short-term effects of salt stress on antioxidant systems and leaf water relation of pea leaves.-Physiol. Plant. 115: 251–257, 2002.PubMedCrossRefGoogle Scholar
  12. Jiang, M., Zhang, J.: Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings.-Plant Cell Physiol. 42: 1265–1273, 2001.PubMedCrossRefGoogle Scholar
  13. Karpinsky, S., Reynolds, H., Karpinska, B., Wingsle, G., Creissen, G., Mullineaux, P.: Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis.-Science 284: 654–657, 1999.CrossRefGoogle Scholar
  14. Keller, T., Schwager, H.: Air pollution and ascorbic acid.-Europ. J. Forest Pathol. 7: 338–350, 1977.CrossRefGoogle Scholar
  15. Kramer, G.F., Norman, H.A., Krizek, D.T., Mirecki, R.M.: Influence of UV-B radiation on polyamines, lipid peroxidation and membrane lipids in cucumber.-Phytochemistry 30: 2101–2108, 1991.CrossRefGoogle Scholar
  16. Larsson, E.H., Bornman, J. F., Asp, H.: Influence of UV-B radiation and Cd2+ on chlorophyll fluorescence, growth and nutrient content in Brassica napus.-J. exp. Bot. 49: 1031–1039, 1998.CrossRefGoogle Scholar
  17. Mackerness, S.A.H., John, C.F., Jordan, B., Thomas, B.: Early signaling components in ultraviolet-B responses: Distinct roles for different reactive oxygen species and nitric oxide.-FEBS Lett. 489: 237–242, 2001.CrossRefGoogle Scholar
  18. Mallick, N., Rai, L.C.: Response of the antioxidant systems of the nitrogen fixing cyanobacterium Anabaena doliolum to copper.-J. Plant Physiol. 155: 146–149, 1999.Google Scholar
  19. McVean, M., Leiber, D.C.: Prevention of DNA photodamage by vitamin E compounds and sunscreens: roles of ultraviolet absorbance and cellular uptake.-Mol. Carcinog. 24: 169–176, 1999.PubMedCrossRefGoogle Scholar
  20. Munné-Bosch, S., Schwarz, K., Alegre, L.: Enhanced formation of tocopherol and highly oxidized abietane diterpenes in water-stressed Rosemary plants.-Plant Physiol. 121: 1047–1052, 1999.CrossRefPubMedGoogle Scholar
  21. Nagalakshmi, N., Prasad, M.N.V.: Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus.-Plant Sci. 160: 291–299, 2001.CrossRefPubMedGoogle Scholar
  22. Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts.-Plant Cell Physiol. 22: 867–880, 1981.Google Scholar
  23. Prasad, S.M., Zeeshan, M.: UV-B radiation and cadmium induced changes in growth, photosynthesis, and antioxidant enzymes of cyanobacterium Plectonema boryanum.-Biol. Plant. 49: 229–236, 2005.CrossRefGoogle Scholar
  24. Rai, L.C., Raizada, M.: Effect of nickel and silver ion on survival, growth, carbon fixation and nitrogenase activity in Nostoc muscorum: Regulation of toxicity by EDTA and calcium.-J. gen. appl. Microbiol. 31: 329–337, 1985.Google Scholar
  25. Rai, L.C., Tyagi, B., Mallick, N., Rai, P.K.: Interactive effects of UV-B and copper on photosynthetic activity of the cyanobacterium Anabaena doliolum.-Environ. exp. Bot. 53: 177–185, 1995.CrossRefGoogle Scholar
  26. Schaedle, M., Bassham, J.A.: Chloroplasts glutathione reductase.-Plant Physiol. 59: 1011–1012, 1977.PubMedGoogle Scholar
  27. Streb, P., Michael-Knauf, A., Feierabend, J.: Preferential photoinactivation of catalase and photoinhibition of photosystem II are common early symptoms under various osmotic and chemical stress conditions.-Physiol. Plant. 88: 590–598, 1993.CrossRefGoogle Scholar
  28. Strid, A., Chow, W.S., Anderson, J.M.: UV-B damage and protection at the molecular level in plants.-Photosynth. Res. 39: 475–489, 1994.CrossRefGoogle Scholar
  29. Tyagi, R., Kumar, A., Tyagi, M.B., Jha, P.N., Kumar, H.D., Sinha, R.P., Häder, D.P.: Protective role of certain chemicals against UV-B induced damage in the nitrogen-fixing cyanobacterium Nostoc muscorum.-J. basic Microbiol. 43: 137–147, 2003.PubMedCrossRefGoogle Scholar
  30. Wirstam, M., Blomberg, M.R.A., Siegbahn, P.E.M.: Reaction mechanism of compound I formation in heme peroxidases: a density functional theory study.-J. amer. chem. Soc. 121: 10178–10185, 1999.Google Scholar
  31. Xiang, C., Oliver, D.J.: Gultathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis.-Plant Cell 10:1539–1550, 1998.PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Experimental Botany, ASCR 2007

Authors and Affiliations

  • P. Bhargava
    • 1
  • N. Atri
    • 1
  • A. K. Srivastava
    • 1
  • L. C. Rai
    • 1
  1. 1.Laboratory of Algal Biology, Center of Advanced Study in BotanyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations