Advertisement

Biologia Plantarum

, 51:546 | Cite as

Cadmium mitigates ultraviolet-B stress in Anabaena doliolum: Enzymatic and non-enzymatic antioxidants

  • P. Bhargava
  • N. Atri
  • A. K. Srivastava
  • L. C. Rai
Brief Communication

Abstract

Impact of ultraviolet-B (UV-B) and Cd, applied individually and in combination, measured in terms of oxygen-evolution, chlorophyll (Chl) and protein contents, lipid peroxidation, and enzymatic and non-enzymatic antioxidants of Anabaena doliolum, revealed a greater oxidative damage induced by UV-B than by Cd. While superoxide dismutase (SOD) showed a greater stimulation by UV-B than Cd, the activities of catalase (CAT) and glutathione reductase (GR) declined after UV-B treatment. Cd treatment, however, enhanced the activities of ascorbate peroxidase (APX) and GR. CAT activity increased at low but decreased at high dose of Cd. Increase in carotenoid (Car) content in UV-B treated cells suggested a shielding effect of Car against UV-B stress. A 15-and 10-fold rise in α-tocopherol (α-TOC) content at high dose of Cd and/or UV-B offered testimony to the antioxidant role of α-TOC.

Additional key words

α-tocopherol ascorbate antioxidative defence system carotenoids chlorophyll oxidative damage 

Abbreviations

α-TOC

α-tocopherol

APX

ascorbate peroxidase

ASA

ascorbate

Car

carotenoid

CAT

catalase

Chl

chlorophyll

GSH

glutathione reduced

GR

glutathione reductase

MDA

malondialdehyde

PAR

photosynthetically active radiation

ROS

reactive oxygen species

SOD

superoxide dismutase

UV-B

ultraviolet B radiation

References

  1. Aebi, H.: Catalase in vitro.-Methods Enzymol. 105: 121–126, 1984.PubMedCrossRefGoogle Scholar
  2. Allen, M.B., Arnon, D.I.: Studies on the nitrogen fixing blue green algae. I. Growth and nitrogen fixation by Anabaena cylindrica Lemm.-Plant Physiol. 30: 366–372, 1955.PubMedGoogle Scholar
  3. Anderson, M.E.: Determination of glutathione and glutathione disulphide in biological samples.-Methods Enzymol. 113: 548–555, 1985.PubMedGoogle Scholar
  4. Asada, K.: The water-water cycle in chloroplasts: Scavenging of active oxygen and dissipation of excess photons.-Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 601–639, 1999.PubMedCrossRefGoogle Scholar
  5. Beyer, R.E.: The role of ascorbate in antioxidant protection of biomolecules: interaction with vitamin E and coenzyme Q.-J. Bioenerg. Biomemb. 26: 349–358, 1994.CrossRefGoogle Scholar
  6. Bradford, M.M.: A rapid and sensitive method for the quantification of microgram quantity of proteins utilising the principle of protein dye binding.-Anal. Biochem. 72: 248–254, 1976.PubMedCrossRefGoogle Scholar
  7. Cakmak, I., Horst, J.: Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean (Glycine max).-Physiol. Plant. 83: 463–468, 1991.CrossRefGoogle Scholar
  8. Campos, J.L., Figueras, X., Piñol, M.T., Boronat, A., Tiburcio, A.F.: Carotenoid and conjugated polyamine levels as indicators of ultraviolet-C induced stress in Arabidopsis thaliana.-Photochem. Photobiol. 53: 689–693, 1991.CrossRefGoogle Scholar
  9. Ehling-Schulz, M., Scherer, S.: UV-B protection in cyanobacteria.-Eur. J. Phycol. 34: 329–338, 1999.CrossRefGoogle Scholar
  10. Gianopolitis, C.N., Ries, S.K.: Superoxide dismutase. 1. Occurrence in higher plants.-Plant Physiol. 59: 309–314, 1977.CrossRefGoogle Scholar
  11. Hernandez, J.A., Almansa, M.S.: Short-term effects of salt stress on antioxidant systems and leaf water relation of pea leaves.-Physiol. Plant. 115: 251–257, 2002.PubMedCrossRefGoogle Scholar
  12. Jiang, M., Zhang, J.: Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings.-Plant Cell Physiol. 42: 1265–1273, 2001.PubMedCrossRefGoogle Scholar
  13. Karpinsky, S., Reynolds, H., Karpinska, B., Wingsle, G., Creissen, G., Mullineaux, P.: Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis.-Science 284: 654–657, 1999.CrossRefGoogle Scholar
  14. Keller, T., Schwager, H.: Air pollution and ascorbic acid.-Europ. J. Forest Pathol. 7: 338–350, 1977.CrossRefGoogle Scholar
  15. Kramer, G.F., Norman, H.A., Krizek, D.T., Mirecki, R.M.: Influence of UV-B radiation on polyamines, lipid peroxidation and membrane lipids in cucumber.-Phytochemistry 30: 2101–2108, 1991.CrossRefGoogle Scholar
  16. Larsson, E.H., Bornman, J. F., Asp, H.: Influence of UV-B radiation and Cd2+ on chlorophyll fluorescence, growth and nutrient content in Brassica napus.-J. exp. Bot. 49: 1031–1039, 1998.CrossRefGoogle Scholar
  17. Mackerness, S.A.H., John, C.F., Jordan, B., Thomas, B.: Early signaling components in ultraviolet-B responses: Distinct roles for different reactive oxygen species and nitric oxide.-FEBS Lett. 489: 237–242, 2001.CrossRefGoogle Scholar
  18. Mallick, N., Rai, L.C.: Response of the antioxidant systems of the nitrogen fixing cyanobacterium Anabaena doliolum to copper.-J. Plant Physiol. 155: 146–149, 1999.Google Scholar
  19. McVean, M., Leiber, D.C.: Prevention of DNA photodamage by vitamin E compounds and sunscreens: roles of ultraviolet absorbance and cellular uptake.-Mol. Carcinog. 24: 169–176, 1999.PubMedCrossRefGoogle Scholar
  20. Munné-Bosch, S., Schwarz, K., Alegre, L.: Enhanced formation of tocopherol and highly oxidized abietane diterpenes in water-stressed Rosemary plants.-Plant Physiol. 121: 1047–1052, 1999.CrossRefPubMedGoogle Scholar
  21. Nagalakshmi, N., Prasad, M.N.V.: Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus.-Plant Sci. 160: 291–299, 2001.CrossRefPubMedGoogle Scholar
  22. Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts.-Plant Cell Physiol. 22: 867–880, 1981.Google Scholar
  23. Prasad, S.M., Zeeshan, M.: UV-B radiation and cadmium induced changes in growth, photosynthesis, and antioxidant enzymes of cyanobacterium Plectonema boryanum.-Biol. Plant. 49: 229–236, 2005.CrossRefGoogle Scholar
  24. Rai, L.C., Raizada, M.: Effect of nickel and silver ion on survival, growth, carbon fixation and nitrogenase activity in Nostoc muscorum: Regulation of toxicity by EDTA and calcium.-J. gen. appl. Microbiol. 31: 329–337, 1985.Google Scholar
  25. Rai, L.C., Tyagi, B., Mallick, N., Rai, P.K.: Interactive effects of UV-B and copper on photosynthetic activity of the cyanobacterium Anabaena doliolum.-Environ. exp. Bot. 53: 177–185, 1995.CrossRefGoogle Scholar
  26. Schaedle, M., Bassham, J.A.: Chloroplasts glutathione reductase.-Plant Physiol. 59: 1011–1012, 1977.PubMedGoogle Scholar
  27. Streb, P., Michael-Knauf, A., Feierabend, J.: Preferential photoinactivation of catalase and photoinhibition of photosystem II are common early symptoms under various osmotic and chemical stress conditions.-Physiol. Plant. 88: 590–598, 1993.CrossRefGoogle Scholar
  28. Strid, A., Chow, W.S., Anderson, J.M.: UV-B damage and protection at the molecular level in plants.-Photosynth. Res. 39: 475–489, 1994.CrossRefGoogle Scholar
  29. Tyagi, R., Kumar, A., Tyagi, M.B., Jha, P.N., Kumar, H.D., Sinha, R.P., Häder, D.P.: Protective role of certain chemicals against UV-B induced damage in the nitrogen-fixing cyanobacterium Nostoc muscorum.-J. basic Microbiol. 43: 137–147, 2003.PubMedCrossRefGoogle Scholar
  30. Wirstam, M., Blomberg, M.R.A., Siegbahn, P.E.M.: Reaction mechanism of compound I formation in heme peroxidases: a density functional theory study.-J. amer. chem. Soc. 121: 10178–10185, 1999.Google Scholar
  31. Xiang, C., Oliver, D.J.: Gultathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis.-Plant Cell 10:1539–1550, 1998.PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Experimental Botany, ASCR 2007

Authors and Affiliations

  • P. Bhargava
    • 1
  • N. Atri
    • 1
  • A. K. Srivastava
    • 1
  • L. C. Rai
    • 1
  1. 1.Laboratory of Algal Biology, Center of Advanced Study in BotanyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations