Biologia Plantarum

, Volume 51, Issue 3, pp 401–406 | Cite as

Leaf senescence and activities of the antioxidant enzymes



Senescence is a genetically regulated process that involves decomposition of cellular structures and distribution of the products of this degradation to other plant parts. Reactions involving reactive oxygen species are the intrinsic features of these processes and their role in senescence is suggested. The malfunction of protection against destruction induced by reactive oxygen species could be the starting point of senescence. This article reviews biochemical changes during senescence in relation to reactive oxygen species and changes in antioxidant protection.

Additional key words

ageing enzymatic antioxidants lipid peroxidation non-enzymatic antioxidants oxidative stress 



ascorbate peroxidase










dehydroascorbate reductase


glutathione peroxidase


glutathione reductase


reduced glutathione


oxidized glutathione


monodehydroascorbate radical


monodehydroascorbate reductase


reactive oxygen species


superoxide dismutase






Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeles, F.B., Dunn, L.J.: Restriction fragment length polymorphism analysis of DNA from senescing cotyledon tissue.-Plant Sci. 72: 13–17, 1990.CrossRefGoogle Scholar
  2. Bate, N.J., Rothstein, S.J., Thompson, J.E.: Expression of nuclear and chloroplast photosynthesis-specific genes during leaf senescence.-Planta 189: 74–79, 1991.Google Scholar
  3. Berlett, B.S., Stadtman, E.R.: Protein oxidation in aging, disease and oxidative stress.-J. biol. Chem. 272: 20313–20316, 1997.Google Scholar
  4. Biradar, D.P., Rayburn, A.L.: Flow cytometric probing of chromatin condensation in maize diploid nuclei.-New Phytol. 126: 31–35, 1994.CrossRefGoogle Scholar
  5. Borochov, A., Halevy, A.H., Borochov, H., Shinitzky, M.: Microviscosity of plasmalemmas in rose petals as affected by age and environmental factory.-Plant Physiol. 61: 812–815, 1978.PubMedGoogle Scholar
  6. Brady, C.J.: Nucleic acid and protein synthesis.-In: Noodén, L.D., Leopold, A.C. (ed.): Senescence and Ageing in Plants. Pp. 147–181. Academic Press, London 1988.Google Scholar
  7. Brunner, B.A., Jones, A.D., German, J.B.: Direct characterization of protein adduct of the lipid peroxidation product 4-hydroxy-2-nonenal using electrospray mass spectrometry.-Chem. Res. Toxicol. 8: 552–559, 1995.CrossRefGoogle Scholar
  8. Buchanan-Wollaston, V.: The molecular biology of leaf senescence.-J. exp. Bot. 307: 181–199, 1997.CrossRefGoogle Scholar
  9. Curty, C., Engel, N.: Detection, isolation and structure elucidation of a chlorophyll a catabolite from autumnal senescent leaves of Cercidiphyllum japonicum.-Phytochemistry 42: 1531–1536, 1996.CrossRefGoogle Scholar
  10. Dat, J., Vandenabeele, S., Vranová, E., Van Montagu, M., Inzé, D., Van Breusegem, F.: Dual action of the active oxygen species during plant stress responses.-Cell. mol. Life Sci. 57: 779–795, 2000.PubMedCrossRefGoogle Scholar
  11. Deo, P.M., Biswal, U.C., Biswal, B.: Water stress-sensitized photoinhibition in senescing cotyledons of clusterbean: Changes in thylakoid structures and inactivation of photosystem 2.-Photosynthetica 44: 187–192, 2006.CrossRefGoogle Scholar
  12. Dertinger, U., Schaz, U., Schulze, E.-D.: Age-dependence of the antioxidative system in tobacco with enhanced glutathione reductase activity or senescence-induced production of cytokinins.-Physiol. Plant 119: 19–29, 2003.CrossRefGoogle Scholar
  13. Doi, M., Shima, S., Egashira, T., Nakamura, K., Okayama, S.: New bile pigment extracted by a Chlamydomonas reinhardtii mutant a possible breakdown catabolite of chlorophyll a.-J. Plant Physiol. 150: 504–508, 1997.Google Scholar
  14. Droillard, M.J., Bate, N.J., Rothstein, S.J., Thompson, J.E.: Active translation of the D1_protein of photosystem II in senescing leaves.-Plant Physiol. 99: 589–594, 1992.PubMedCrossRefGoogle Scholar
  15. Elstner, E.F.: Oxygen activation and oxygen toxicity.-Annu. Rev. Plant Physiol. 33: 73–96, 1982.CrossRefGoogle Scholar
  16. Engel, N., Jenny, T.A., Mooser, V., Gossauer, A.: Chlorophyll catabolism in Chlorella protothecoides. Isolation and structure elucidation of a red bilin derivates.-FEBS Lett. 293: 131–133, 1991.PubMedCrossRefGoogle Scholar
  17. Esterbauer, H., Schaur, R.J., Zollner, H.: Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes.-Free Radical Biol. Med. 11: 81–128, 1991.CrossRefGoogle Scholar
  18. Foyer, C.H., Noctor, G.: Oxygen processing in photosynthesis: a molecular approach.-New Phytol. 146: 359–392, 2000.CrossRefGoogle Scholar
  19. Friguet, B., Szweda, L.I., Stadtman, E.R.: Susceptibility of glucose-6-phosphate dehydrogenase modified by 4-hydroxy-2-nonenal and metal-catalyzed oxidation to proteolysis by the multicatalytic protease.-Arch. Biochem. Biophys. 311: 168–173, 1994.PubMedCrossRefGoogle Scholar
  20. Fu, J., Huang, B., Zhang, G.: Physiological and biochemical changes during seed filling in relation to leaf senescence in soybean.-Biol. Plant. 43: 545–548, 2000.CrossRefGoogle Scholar
  21. Ginsburg, S., Matile, P.: Identification of catabolites of chlorophyllporphyrin in senescent rape cotyledons.-Plant Physiol. 102: 521–527, 1993.PubMedGoogle Scholar
  22. Green, P.J.: The ribonucleases of higher plants.-Annu. Rev. Plant Physiol. Plant mol. Biol. 45: 421–445, 1994.CrossRefGoogle Scholar
  23. Harman, D.: The aging process.-Proc. nat. Acad. Sci. USA 78: 7124–7128, 1981.PubMedCrossRefGoogle Scholar
  24. Hawkins, C.L., Davies, M.J.: Generation and propagation of radical reactions on proteins.-Biochim. biophys. Acta 1504: 196–219, 2001.PubMedCrossRefGoogle Scholar
  25. Hensel, L.L., Grbic, V., Baumgarten, D.A., Bleecker, A.B.: Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidopsis.-Plant Cell 5: 553–564, 1993.PubMedCrossRefGoogle Scholar
  26. Hörtensteiner, S.: The loss of green color during chlorophyll degradation-a prerequisite to prevent cell death?-Planta 219: 191–194, 2004.PubMedCrossRefGoogle Scholar
  27. Iturraspe, J., Moyano, N.: A new 5-formylbilinone as a major chlorophyll a catabolite in tree senescent leaves.-J. org. Chem. 60: 6664–6665, 1995.CrossRefGoogle Scholar
  28. Jaybaskaran, C., Kuntz, M., Guillemaut, P., Weil, J.H.: Variations in the leaves of chloroplast transfer RNA and aminoacyl transfer RNA synthetases in senescing leaves of Phaseolus vulgaris.-Plant Physiol. 92: 136–140, 1990.Google Scholar
  29. Jimenéz, A., Hernandez, J.A., Pastori, G., Del Río, L.A., Sevilla, F.: Role of ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves.-Plant Physiol. 118: 1327–1335, 1998.CrossRefPubMedGoogle Scholar
  30. Kanazawa, S., Sano, S., Koshiba, T., Ushimaru, T.: Changes in antioxidative enzymes in cucumber cotyledons during natural senescence: comparison with those during dark-induced senescence.-Physiol. Plant. 109: 211–216, 2000.CrossRefGoogle Scholar
  31. Kar, M., Feierabend, J.: Metabolism of activated oxygen in detached wheat and rye leaves and its relevance to the initiation of senescence.-Planta 160: 385–391, 1984.CrossRefGoogle Scholar
  32. Kräutler, B.: Chlorophyll breakdown and chlorophyll catabolites.-In: Kadish, K.M., Smith, K.M., Guilard, R. (ed.): The Porphyrin Handbook. Vol. 13. Pp. 183–209. Elsevier, San Diego 2003.Google Scholar
  33. Kuran, H.: Changes in DNA, dry mass and protein content of leaf epidermic nuclei during aging of perennial monocotyledonous plants.-Acta Soc. Bot. Pol. 62: 149–154, 1993.Google Scholar
  34. Lees, G.L., Thompson, J.E.: Lipid composition and molecular organization in plasma membrane-enriched fractions from senescing cotyledons.-Physiol. Plant. 49: 215–221, 1980.CrossRefGoogle Scholar
  35. Lohman, K.N., Gan, S., John, M.C., Amasino, R.M.: Molecular analysis of natural leaf senescence in Arabidopsis thaliana.-Physiol. Plant. 92: 322–328, 1994.CrossRefGoogle Scholar
  36. Makrides, S.C., Goldthwaite, J.: Biochemical changes during bean leaf growth, maturity and senescence. Contents of DNA, polyribosomes, ribosomal RNA, protein and chlorophyll.-J. exp. Bot. 32: 725–735, 1981.CrossRefGoogle Scholar
  37. Malik, N.S.A.: Senescence in oat leaves: changes translatable mRNAs.-Physiol. Plant. 70: 438–446, 1987.CrossRefGoogle Scholar
  38. Matile, P.: Chloroplast senescence.-In: Baker, N.R., Thomas, H. (ed.): Crop Photosynthesis: Spatial and Temporal Determinants. Pp. 413–440. Elsevier, Amsterdam 1992.Google Scholar
  39. Matile, P., Ginsburg, S., Schellenberg, M., Thomas, H.: Catabolites of chlorophyll in senescing leaves are localized in the vacuoles of mesophyll cell.-Proc. nat. Acad. Sci. USA 85: 9529–9532, 1988.PubMedCrossRefGoogle Scholar
  40. Matile, P., Hörtensteiner, S.: Chlorophyll degradation.-Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 67–95, 1999.PubMedCrossRefGoogle Scholar
  41. Matile, P., Hörtensteiner, S., Thomas, H., Kräutler, B.: Chlorophyll breakdown in senescent leaves.-Plant Physiol. 112: 1403–1409, 1996.PubMedGoogle Scholar
  42. McKersie, B.D., Lepock, J.R., Kruuv, J., Thompson, J.E.: The effects of cotyledon senescence on the composition and physical properties of membrane lipid.-Biochim. biophys. Acta 508: 197–212, 1978.PubMedCrossRefGoogle Scholar
  43. Munné-Bosch, S., Schwarz, K., Alegre, L.: Water deficit in combination with high solar radiation leads to midday depression of α-tocopherol in field-grown lavender (Lavandula stoechas) plants.-Aust. J. Plant Physiol. 28: 315–321, 2001.Google Scholar
  44. Noodén, L.N., Guiamét, J.J., John, I.: Senescence mechanisms.-Physiol. Plant. 101: 746–753, 1997.CrossRefGoogle Scholar
  45. Paliyath, G., Droillard, M.J.: The mechanisms of membrane deterioration and disassembly during senescence.-Plant Physiol. Biochem. 30: 789–812, 1992.Google Scholar
  46. Pastori, G.M., Del Río, L.A.: An activated-oxygen-mediated role for peroxisomes in the mechanism of senescence of Pisum sativum L. leaves.-Planta 193: 385–391, 1994.CrossRefGoogle Scholar
  47. Peñarrubia, L., Moreno, J.: Senescence in Plants and Crops.-In: Pessarakli, M. (ed.): Handbook of Plant and Crop Physiology. Pp. 461–481. Marcel Dekker, New York-Basel-Hong Kong 1995.Google Scholar
  48. Procházková, D. Sairam, R.K., Srivastava, G.C., Singh, D.V.: Oxidative stress and antioxidant activity as the basis of senescence in maize leaves.-Plant Sci. 161: 765–771, 2001.CrossRefGoogle Scholar
  49. Procházková, D., Wilhelmová, N.: Changes in antioxidative protection in bean cotyledons during natural and continuous irradiation-accelerated senescence.-Biol. Plant. 48: 33–39, 2004.CrossRefGoogle Scholar
  50. Procházková, D., Wilhelmová, N.: The capacity of antioxidant protection during modulated ageing of bean (Phaseolus vulgaris) cotyledons. 1. The antioxidant enzyme activities.-Cell Biochem. Funct. 25: 87–95, 2007a.PubMedCrossRefGoogle Scholar
  51. Procházková, D., Wilhelmová, N.: The capacity of antioxidant protection during modulated ageing of bean (Phaseolus vulgaris) cotyledons. 2. The low-molecular weight antioxidants.-Cell Biochem. Funct. 25: 97–102, 2007b.PubMedCrossRefGoogle Scholar
  52. Refsgaard, H.H., Tsai, L. Stadtman, E.R.: Modifications of proteins by polyunsaturated fatty acid peroxidation products.-Proc. nat. Acad. Sci. USA 97: 611–616, 2000.PubMedCrossRefGoogle Scholar
  53. Rodoni, S., Mühlecker, W., Anderl, W., Kräutler, B., Moser, D., Thomas, H., Matile, P., Hörtensteiner, S.: Chlorophyll breakdown in senescent chloroplasts. Cleavage of pheophorbide a in two enzymatic steps.-Plant Physiol. 115: 669–676, 1997.PubMedCrossRefGoogle Scholar
  54. Scebba, F., Sebastiani, L., Vitagliano, C.: Activities of antioxidant enzymes during senescence of Prunus armeniaca leaves.-Biol. Plant. 44: 41–46, 2001.CrossRefGoogle Scholar
  55. Shioi, Y., Tomita, N., Tsuchiya, T., Takamiya, K.: Conversion of chlorophyllide to pheophorbide by Mg-dechelating substane in extracts of Chenopodium album.-Plant Physiol. Biochem. 34: 41–47, 1996a.Google Scholar
  56. Shioi, Y., Watanabe, K., Takamiya, K.: Enzymatic conversion of pheophorbide a to the precursor of pyropheophorbide a in leaves of Chenopodium album.-Plant Cell Physiol. 37: 1143–1149, 1996b.Google Scholar
  57. Smirnoff, N.: The role of active oxygen in the response of plants to water deficit and desication.-New Phytol. 125: 27–58, 1993.CrossRefGoogle Scholar
  58. Srivalli, B., Khanna-Chopra, R.: Induction of new isoforms of superoxide dismutase and catalase enzymes in the flag leaf of wheat during monocarpic senescence.-Biochem. biophys. Res. Commun. 288: 1037–1042, 2001.PubMedCrossRefGoogle Scholar
  59. Suzuki, Y., Shioi, Y.: Detection of chlorophyll breakdown products in the senescent leaves of higher plants.-Plant Cell Physiol. 40: 909–915, 1999.Google Scholar
  60. Thimann, K.V.: The senescence of leaves.-In: Thimann, K.V. (ed.): Senescence in Plants. Pp. 86–115. CRC Press, Boca Raton 1980.Google Scholar
  61. Thomas, H., Ougham, H.J., Davies, T.G.E.: Leaf senescence in a non-yellowing mutant of Festuca pratensis-transcripts and translation products.-J. Plant Physiol. 139: 403–412, 1992.Google Scholar
  62. Thomas, H., Stoddard, J.L.: Leaf senescence.-Annu. Rev. Plant Physiol. 31: 83–111, 1980.CrossRefGoogle Scholar
  63. Thompson, J.E., Barber, R.F.: The role of free radicals in senescence and wounding.-New Phytol. 105: 317–344, 1987.CrossRefGoogle Scholar
  64. Tsuchiya, T., Ohta, H., Masuda, T., Mikami, B., Kita, N., Shioi, Y., Takamiya, K.: Purification and characterization of two isozymes of chlorophyllase from mature leaves of Chenopodium album.-Plant Cell Physiol. 38: 1026–1031, 1997.Google Scholar
  65. Uchida, K., Stadtman, E.R.: Modification of histidine residues in proteins by reactions with 4-hydroxynonenal.-Proc. nat. Acad. Sci. USA 89: 4544–4548, 1992.PubMedCrossRefGoogle Scholar
  66. Valentine, J.S., Wertz, D.L., Lyons, T.J., Liou, L.L., Goto, J.J., Gralla, E.B.: The dark side of dioxygen biochemistry.-Curr. Opin. Chem. Biol. 2: 253–262, 1998.PubMedCrossRefGoogle Scholar
  67. Vicentini, F., Matile, P.: Gerontosomes, a multi-functional type of peroxisome in senescent leaves.-J. Plant. Physiol. 142: 50–56, 1993.Google Scholar
  68. Watanabe, K., Ohta, H., Tsuchiya, T., Mikami, B., Masuda, T., Shioi, Y., Takamiya, K.: Purification and some properties of pheophorbidase in Chenopodium album.-Plant Cell Physiol. 40: 104–108, 1999.Google Scholar
  69. Wilhelmová, N., Dominques, P.M.D.N., Srbová, M., Fuksová, H., Wilhelm, J.: Changes in nonpolar aldehydes in bean cotyledons during ageing.-Biol. Plant. 50: 559–564, 2006.CrossRefGoogle Scholar
  70. Ye, Z.Z., Rodriquez, R., Tran, A., Hoang, H., De los Santos, D., Brown, S., Vellanoweth, R.L.: The developmental transition to flowering represses ascorbate peroxidase activity and induces enzymatic lipid peroxidation in leaf tissue in Arabidopsis thaliana.-Plant Sci. 158: 115–127, 2000.CrossRefPubMedGoogle Scholar
  71. Zimmermann, P., Heinlein, C., Orendi, G., Zentgraf, U.: Senescence-specific regulation of catalases in Arabidopsis thaliana (L.) Heynh.-Plant Cell Environ. 29: 1049–1060, 2006.PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Experimental Botany, ASCR 2007

Authors and Affiliations

  1. 1.Institute of Experimental BotanyAcademy of Sciences of the Czech RepublicPrague 6Czech Republic

Personalised recommendations