Biologia Plantarum

, Volume 51, Issue 2, pp 355–358 | Cite as

Effects of brassinosteroid infiltration prior to cold treatment on ion leakage and pigment contents in rape leaves

  • A. JaneczkoEmail author
  • G. Gullner
  • A. Skoczowski
  • F. Dubert
  • B. Barna
Brief Communication


The effect of 24-epibrassinolide (BR27) on cold resistance of rape seedlings was studied by ion leakage and photosynthetic pigment degradation measurements. Aqueous solutions of BR27 were injected into cotyledons or primary leaves of rape plants and these plants were incubated at 2 °C or 20 °C. Cold treatment (2 °C) without BR27 injection elevated the membrane permeability in both primary leaves and cotyledons significantly. Surprisingly, injection of leaves with water or 0.467 % aqueous ethanol solution led to a massive increase in membrane permeability after cold stress at 2 °C. The synergistic effect of leaf infiltration and cold on permeability was abolished by 0.05 and 1.00 µM of BR27 in primary leaves and by 1.00 µM of BR27 in cotyledons. On the other hand, BR27 solutions strongly elevated the membrane permeability at 20 °C, while water and ethanol solutions brought about only negligible increases. Water or ethanol infiltrations strongly reduced the leaf contents of chlorophyll (Chl) a, Chl b and carotenoids at 2 °C but less markedly at 20 °C. However, in seedlings exposed to 2 °C pigments content was significantly higher in BR27-treated leaves as compared to water/ethanol control. There were no differences between pigment contents of leaves injected with BR27 solutions or only water/ethanol at 20 °C. The above data strongly support the stress protecting effect of BR27.

Additional key words

carotenoids chlorophyll cold stress 24-epibrassinolide ion leakage 







photosynthetically active radiation


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anuradha, S., Rao, S.S.R.: Application of brassinosteroids to rice seeds (Oryza sativa L.) reduced the impact of salt stress on growth, prevented photosynthetic pigment loss and increased nitrate reductase activity.-Plant Growth Regul. 40: 29–32, 2003.CrossRefGoogle Scholar
  2. Barna, B., Ádám, A., Király, Z.: Juvenility and resistance of a superoxide-tolerant plant to diseases and other stresses.-Naturwissenschaften 80: 420–422, 1993.CrossRefGoogle Scholar
  3. Bilkisu, A.A., Xiao-Gang, G., Qing-Lei, G., Yong-Hua, Y.: Brassinolide amelioration of aluminum toxicity in mungbean seedling growth.-J. Plant Nutr. 26: 1725–1734, 2003.CrossRefGoogle Scholar
  4. Bishop, G.J., Yokota, T.: Plants steroid hormones, brassinosteroids: current highlights of molecular aspects on their synthesis/metabolism, transport, perception and response.-Plant Cell Physiol. 42: 114–120, 2001.PubMedCrossRefGoogle Scholar
  5. Dhaubhadel, S., Browning, K.S., Gallie, D.R., Krishna, P.: Brassinosteroid functions to protect the translational machinery and heat shock protein synthesis following thermal stress.-Plant J. 29: 681–691, 2002.PubMedCrossRefGoogle Scholar
  6. Dhaubhadel, S., Chaudhary, S., Dobinson, K.F., Krishna, P.: Treatment with 24-epibrassinolide, a brassinosteroid, increases the basic thermotolerance of Brassica napus and tomato seedlings.-Plant mol. Biol. 40: 333–342, 1999.PubMedCrossRefGoogle Scholar
  7. Fariduddin, Q., Ahmad, A., Hayat, S.: Responses of Vigna radiata to foliar application of 28-homobrassinolide and kinetin.-Biol. Plant. 48: 465–468, 2004.CrossRefGoogle Scholar
  8. Grove, M.D., Spencer, G.F., Rohwedder, W.K., Mandawa, N., Worley, J.F., Warthen, J.D., Steffens, G.L., Flippen-Anderson, J.L., Cook, J.C.: Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen.-Nature 281: 216–217, 1979.CrossRefGoogle Scholar
  9. Hayat, S., Ahmad, A., Hussain, A., Mobin, M.: Growth of wheat seedlings raised from the grains treated with 28-homobrassinolide.-Acta Physiol. Plant. 23: 27–30, 2001.Google Scholar
  10. Hayat, S., Ahmad, A., Mobin, M., Hussain, A., Fariduddin, Q.: Photosynthetic rate, growth, and yield of mustard plants sprayed with 28-homobrassinolide.-Photosynthetica 38: 469–471, 2000.CrossRefGoogle Scholar
  11. Hotta, Y., Tanaka, T., Luo, B.S., Takeuchi, Y., Konnai, M.: Improvement of cold resistance in rice seedlings by 5-aminolevulinic acid.-J. Pest. Sci. 23: 29–33, 1998.Google Scholar
  12. Janeczko, A., Filek, W., Biesaga-Kościelniak, J., Marcińska, I., Janeczko, Z.: The influence of animal sex hormones on the induction of flowering in Arabidopsis thaliana: comparison with the effect of 24-epibrassinolide.-Plant Cell Tissue Organ Cult. 72: 147–151, 2003.CrossRefGoogle Scholar
  13. Janeczko, A., Kościelniak, J., Pilipowicz, M., Szarek-Łukaszewska, G., Skoczowski, A.: Protection of winter rape photosystem 2 by 24-epibrassinolide under cadmium stress.-Photosynthetica 43: 293–298, 2005.CrossRefGoogle Scholar
  14. Jatimliansky, J.R., Garcia, M.D., Molina, M.C.: Response to chilling of Zea mays, Tripsacum dactyloides and their hybrid.-Biol. Plant. 48: 561–567, 2004.CrossRefGoogle Scholar
  15. Kęesy, J., Trzaskalska, A., Galoch, E., Kopcewicz, J.: Inhibitory effect of brassinosteroids on the flowering of the short-day plant Pharbitis nil.-Biol. Plant. 47: 597–600, 2003.CrossRefGoogle Scholar
  16. Krishna, P.: Brassinosteroid-mediated stress responses.-J. Plant Growth Regul. 22: 289–297, 2003.PubMedCrossRefGoogle Scholar
  17. Lichtenthaler, H.K., Wellburn, A.R.: Determinations of total carotenoids and chlorophyll a and b leaf extracts in different solvents.-Biochem. Soc. Trans. 603: 591–592, 1983.Google Scholar
  18. Mandava, N.B.: Plant growth-promoting brassinosteroids.-Annu. Rev. Plant Physiol. Plant mol. Biol. 39: 23–52, 1988.CrossRefGoogle Scholar
  19. Mazorra, L.M., Núñez, M.: Brassinosteroid analogues differentially modify peroxidase activity, superoxide dismutase activity and protein content in tomato seedlings.-Cult. Tropic. 21: 29–33, 2000.Google Scholar
  20. Mazorra, L.M., Núñez, M., Hechavarria, M., Coll, F., Sanchez-Blanco, M.J.: Influence of brassinosteroids on antioxidant enzymes activity in tomato under different temperatures.-Biol. Plant. 45: 593–596, 2002.CrossRefGoogle Scholar
  21. Ramraj, V.M., Vyas, B.N., Godrej, N.B., Mistry, K.B., Swami, B.N., Singh, N.: Effects of 28-homobrassinolide on yields of wheat, rice, groundnut, mustard, potato and cotton.-J. agr. Sci. 128: 405–413, 1997.CrossRefGoogle Scholar
  22. Sasse, J.M.: Physiological actions of brassinosteroids: an update.-J. Plant Growth Regul. 22: 276–288, 2003.PubMedCrossRefGoogle Scholar
  23. Vardhini, B.V., Rao, S.S.R.: Effect of brassinosteroids on growth, metabolite content and yield of Arachis hypogaea.-Phytochemistry 48: 927–930, 1998.CrossRefGoogle Scholar
  24. Wilen, R.W., Sacco, M., Gusta, L.V., Krishna, P.: Effects of 24-epibrassinolide on freezing and thermotolerance of bromegrass (Bromus inermis) cell cultures.-Physiol. Plant. 95: 195–202, 1995.CrossRefGoogle Scholar
  25. Yoshioka, H., Numata, N., Nakajima, K., Katou, S., Kawakita, K., Rowland, O., Jones, J.D.G., Doke, N.: Nicotiana bethamiana gp91phox homologs NbrbohA and NbrboB participate in H2O2 accumulation and resistance to Phytophthora infestans.-Plant Cell 15: 706–718, 2003.PubMedCrossRefGoogle Scholar
  26. Yu, J.Q., Huang, L.F., Hu, W.H., Zhou, Y.H., Mao, W.H., Ye, S.F., Nogues, S.: A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus.-J. exp. Bot. 55: 1135–1143, 2004.PubMedCrossRefGoogle Scholar
  27. Zullo, M.A.T., Adam, G.: Brassinosteroid phytohormones — structure, bioactivity and applications.-Braz. J. Plant Physiol. 14: 83–121, 2002.CrossRefGoogle Scholar
  28. Zullo, M.A.T., Kohout, L.: Semisystematic nomenclature of brassinosteroids.-Plant Growth Regul. 42: 15–28, 2004.CrossRefGoogle Scholar

Copyright information

© Institute of Experimental Botany, ASCR 2007

Authors and Affiliations

  • A. Janeczko
    • 1
    Email author
  • G. Gullner
    • 2
  • A. Skoczowski
    • 1
  • F. Dubert
    • 1
  • B. Barna
    • 2
  1. 1.The Franciszek Górski Institute of Plant PhysiologyPolish Academy of SciencesKrakowPoland
  2. 2.Plant Protection InstituteHungarian Academy of SciencesBudapestHungary

Personalised recommendations