Biologia Plantarum

, Volume 51, Issue 2, pp 242–248 | Cite as

Agrobacterium-mediated transformation of Cry1C, Cry2A and Cry9C genes into Gossypium hirsutum and plant regeneration

  • X. Guo
  • C. Huang
  • S. Jin
  • S. Liang
  • Y. Nie
  • X. Zhang
Original Papers


Three constructs harbouring novel Bacillus thuringiensis genes (Cry1C, Cry2A, Cry9C) and bar gene were transformed into four upland cotton cultivars, Ekangmian10, Emian22, Coker201 and YZ1 via Agrobacterium-mediated transformation. With the bar gene as a selectable marker, about 84.8 % of resistant calli have been confirmed positive by polymerase chain reaction (PCR) tests, and totally 50 transgenic plants were regenerated. The insertions were verified by means of Southern blotting. Bioassay showed 80 % of the transgenic plantlets generated resistance to both herbicide and insect. We optimized conditions for improving the transformation efficiency. A modified in vitro shoot-tip grafting technique was introduced to help entire transplantation. This result showed that bar gene can replace antibiotic marker genes (ex. npt II gene) used in cotton transformation.

Additional key words

Agrobacterium tumefaciens bar gene cotton novel Bt genes 





embryogenic callus


indole-3-butyric acid

npt II

neomycin phosphotransferase






polymerase chain reaction


Murashige and Skoog (1962) medium with B5 (Gamborg et al. 1968) vitamins


phosphinothricin acetyltransferase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal, D.C., Banerjee, A.K., Kolala, R.R., Dhage, A.B., Kulkarni, A.V., Nalawade, S.M., Hazra, S., Krishnamurthy, K.V.: In vitro induction of multiple shoots and plant regeneration in cotton (Gossypium hirsutum L.).-Plant Cell Rep. 16: 647–652, 1997.Google Scholar
  2. Cao, J., Duan, X., McElroy, D., Wu, R.: Regeneration of herbicide resistant transgenic rice plants following microprojectile-mediated transformation of suspension culture cells.-Plant Cell Rep. 11: 586–591, 1992.CrossRefGoogle Scholar
  3. Chaudhary, B.S., Kumar, K.V., Prasad, S.K., Oinam, G.S., Burma, P.K., Pental, D.: Slow desiccation leads to high-frequency shoot recovery from transformed somatic embryos of cotton (Gossypium hirsutum L. cv. Coker 310 FR).-Plant Cell Rep. 21: 955–960, 2003.PubMedCrossRefGoogle Scholar
  4. De Block, M., Botterman, J., Vandewiele, M., Dockx, J., Thoen, C., Gossele, V., Rao, V., Movva, N., Thompson, C., Van Montagu, M.: Engineering herbicide resistance in plants by expression of a detoxifying enzyme.-EMBO J. 6: 2513–2518, 1987.PubMedGoogle Scholar
  5. De Block, M., De Brouwer, D., Tenning, P.: Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants.-Plant Physiol. 91: 694–701, 1989.PubMedCrossRefGoogle Scholar
  6. Gamborg, O.L., Miller, R.A., Ojima, K.: Nutrient requirements of suspension culture of soybean roots cells.-Exp. Cell Res. 50: 150–158, 1968.CrossRefGoogle Scholar
  7. Jin, S.X., Zhang, X.L., Liang, S.G., Nie, Y.C., Guo, X.P., Huang, C.: Factors affecting stable transformation and plant regeneration during transforming embryogenic callus of Upland cotton (Gossypium hirsutum L.) via Agrobacterium tumefaciens.-Plant Cell Tissue Organ Cult. 81: 229–237, 2005.CrossRefGoogle Scholar
  8. Keller, G., Spatola, L., McCable, D., Martinell, B., Swain, W., John, M.E.: Transgenic cotton resistant to herbicide bialaphos.-Transgenic Res. 6: 385–392, 1997.CrossRefGoogle Scholar
  9. Leelavathi, V.G., Sunnichan, R.K., Umria, G.P., Vijaykanth, R.K., Bhatnagar Reddy, V.: A simple and rapid Agrobacterium-mediated transformation protocol for cotton (Gossypium hirsutum L.): Embryogenic calli as a source to generate large numbers of transgenic plants.-Plant Cell Rep. 22: 465–470, 2004.PubMedCrossRefGoogle Scholar
  10. Lin, Y.J., Zhang, Q.F.: A synthetic Bacillus thuringiensis insecticidal crystal protein Cry1C.-China Patent. 1483823.2004-03-34a.Google Scholar
  11. Lin, Y.J., Zhang, Q.F.: A synthetic Bacillus thuringiensis insecticidal crystal protein Cry2A.-China Patent. 1480533.2004-03-10b.Google Scholar
  12. Liu, H.Y., Yang, Y.H., Wu, Z.B., Wang, X.D., Yao, M.J.: Introduction of rol genes into cotton (Gossypium hirsutum L.) genome and effects of transgene expression on the plant development.-Agr. Sci. China 3: 728–737, 2004.Google Scholar
  13. Manickavasagam, M., Ganapathi, A., Anbazhagan, V.R., Sudhakar, B., Selvaraj, N., Vasudevan, A., Kasthurirengan, S.: Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids) using axillary buds.-Plant Cell Rep. 23: 134–143, 2004.PubMedCrossRefGoogle Scholar
  14. Meng, F., Shen, J., Zhou, W., Cen, H.: Long-term selection for resistance to transgenic cotton expressing Bacillus thuringiensis toxin in Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae).-Pest Manage. Sci. 60: 167–172, 2004.CrossRefGoogle Scholar
  15. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissues cultures.-Physiol. Plant. 15: 473–479, 1962.CrossRefGoogle Scholar
  16. Nester, E.W., Thomashow, L.S., Matthew, M., Gordon, M.: 100 Years of Bacillus thuringiensis: a Critical Scientific Assessment.-American Academy of Microbiology, Washington 2002.Google Scholar
  17. Paterson, A.H., Brubaker, C.L, Wendel, J.F.: A rapid method for extraction of cotton (Gossypium L.) genomic DNA suitable for RFLP or PCR analysis.-Plant mol. Biol. Rep. 11: 122–127, 1993.Google Scholar
  18. Popelka, J.C., Xu, J.P., Altpeter, F.: Generation of rye (Secale cereale L.) plants with low transgene copy number after biolistic gene transfer and production of instantly marker-free transgenic rye.-Transgenic Res. 12: 587–596, 2003.PubMedCrossRefGoogle Scholar
  19. Sambrook, J., Fritsch, E.F., Maniatis, T.: Molecular Cloning: a Laboratory Manual. 2nd Ed.-Cold Spring Harbor Laboratory Press, Cold Spring Harbor 1989.Google Scholar
  20. Shu, Q.Y., Ye, G.Y., Cui, H.R., Cheng, X., Xiang, Y., Wu, D.: Transgenic rice plants with a synthetic cry1Ab gene from Bacillus thuringiensis were highly resistant to eight lepidopteran rice pest species.-Mol. Breed. 6: 433–439, 2000.CrossRefGoogle Scholar
  21. Skirvin, R.M., Kenneth, D.M., Margaret, N.: Sources and frequency of somaclonal variation.-Hort. Sci. 29: 1232–1237, 1994.Google Scholar
  22. Tabashnik, B.E., Cushing, N.L., Finson, N., Johnson, M.W.: Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae).-J. Econ. Entomol. 83: 1671–1676, 1990.Google Scholar
  23. Thompson, C.J., Movva, N.R., Tizard, R., Crameri, R., Davies, J.E., Lauwereys, M., Botterman, J.: Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus.-EMBO J. 6: 2519–2523, 1987.PubMedGoogle Scholar
  24. Wu, J.H., Zhang, X.L., Nie, Y.C., Luo, X.Y.: High-efficiency transformation of Gossypium hirsutum embryogenic calli mediated by Agrobacterium tumefaciens and regeneration of insect-resistant plants.-Plant Breed. 124: 142–146, 2005.CrossRefGoogle Scholar
  25. Zeng, P., Vadnais, A., Zhang, J., Polacco, C.: Refined glufosinate selection in Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill].-Plant Cell Rep. 22: 478–482, 2004.PubMedCrossRefGoogle Scholar
  26. Zheng, S.: Chromosome variation in callus culture of Gossypium hirsutum L.-Genes 3: 211–221, 1991.Google Scholar

Copyright information

© Institute of Experimental Botany, ASCR 2007

Authors and Affiliations

  • X. Guo
    • 1
  • C. Huang
    • 1
  • S. Jin
    • 1
  • S. Liang
    • 1
  • Y. Nie
    • 1
  • X. Zhang
    • 1
  1. 1.National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan, HubeiP.R. China

Personalised recommendations