Biologia Plantarum

, 51:229

Effects of freezing on plasma membrane H+-ATPase of the callus from Chorispora bungeana

  • J. M. Wu
  • Z. G. Zhao
  • H. Xing
  • H. P. Guo
  • W. X. Li
  • L. Z. An
  • S. J. Xu
  • T. Chen
Original Papers

Abstract

The influence of freezing treatment on plasma membrane (PM) H+-ATPase was investigated using plasma membrane vesicles isolated from calluses from Chorispora bungeana Fisch. & C.A. Mey. by the discontinuous sucrose gradient centrifugation. Freezing treatment (−4 °C) for 5 d resulted in significant increases in the ATPase activity and the activity of p-nitrophenyl phosphate (PNPP) hydrolysis, decreases in the Km for ATP hydrolysis and PNPP hydrolysis, and the shift of optimal pH from 6.5 to 7.0. Also, the activity PNPP hydrolysis was less sensitive to vanadate after freezing treatment compared to control, while the inhibition of ATP hydrolysis by hydroxylamine was more sensitive. In addition, freezing treatment also decreased the activation effects of trypsin on PNPP hydrolysis, but increased the activation effects of lysophosphatidylcholine on ATP hydrolysis. Taken together, these results suggested that PM H+-ATPase might play an important role during adaptation to freezing and enhancing the frost hardness in C. bungeana.

Additional key words

alpine plant kinase domain p-nitrophenyl phosphate phosphatase domain 

Abbreviations

ATP

adenosine triphosphate

BSA

bovine serum albumin

DTT

dithiothreitol

EDTA

ethylenediaminetetraacetic acid

lyso-PC

lysophosphatidylcholine

Mes

2-(N-morpholino)-ethanesulfonic acid

PM

plasma membrane

PMSF

phenylmethylsulfonyl fluoride

PNPP

p-nitrophenyl phosphate

Tris

N-tris(hydroxymethyl)-amino methane

References

  1. A, Y.R., Tan, D.Y., Li, Z.J., Yao, F.: The relationship between the structures of vegetative organs in Chorispora bungeana and its environment.-J. Xinjiang Agr. Univ. 21: 273–277, 1998.Google Scholar
  2. Ahn, S.J, Im, Y.J., Chung, G.C., Cho, B.H.: Inducible expression of plasma membrane H+-ATPase in the roots of figleaf gourd plants under chilling root temperature.-Physiol. Plant. 106: 35–40, 1999.CrossRefGoogle Scholar
  3. An, L.Z., Liu, Y.H., Feng, G.N., Feng, H.Y., Chen, T., Cheng, G.D.: Studies on ecological properties of altifrigetic subnival vegetation at the source area of Urumqi river.-Acta bot. Boreal-Occident. sin. 20: 98–105, 2000.Google Scholar
  4. Arora, R., Palta, J.P.: A loss in plasma membrane ATPase activity and its recovery coincides with incipient freeze-thaw injury and is recovery in onion bulb scale tissue.-Plant Physiol. 95: 845–852, 1991.Google Scholar
  5. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding.-Anal. Biochem. 72: 248–254, 1976.PubMedCrossRefGoogle Scholar
  6. Briskin, D.P.: The plasma membrane H+-ATPase of higher plant cells: biochemistry and transport function.-Biochim. biophys. Acta 1019: 95–109, 1990.CrossRefGoogle Scholar
  7. Chen, K.-M., Gong, H.-J., Wang, S.-M., Zheng, W.-J., Zhang, L.-C.: Regulation of the structure and catalytic properties of plasma membrane H+-ATPase involved in adaptation of two reed ecotypes to their different habitats.-Biol. Plant. 49: 513–519, 2005.CrossRefGoogle Scholar
  8. Cooke, D.T., Burden, R.S.: Lipid modulation of plasma membrane-bound ATPase.-Physiol. Plant. 78: 153–159, 1990.CrossRefGoogle Scholar
  9. Dell’Orto, M., Santi, S., Nisi, P.D., Cesco, S., Varanini, Z., Zocchi, G., Pinton, R.: Development of Fe-deficiency responses in cucumber (Cucumis sativus L.) roots: involvement of plasma membrane H+-ATPase activity.-J. exp. Bot. 51: 695–701, 2000.PubMedCrossRefGoogle Scholar
  10. Dong, C.Z., Montillet, J.L., Triantaphylides, C.: Effect of gamma irradiation on the plasma membrane of suspension-cultured apple cells: Rapid irreversible inhibition of H+-ATPase activity.-Physiol. Plant. 90: 307–312, 1994.CrossRefGoogle Scholar
  11. Fu, X.Y., Chang, J.F., An, L.Z., Zhang, M.X., Xu, S.J., Chen, T., Liu, Y.H., Xing, H., Wang, J.H.: Association of the cold-hardness of Chorispora bungeana with the distribution and accumulation of calcium in the cells and tissues.-Environ. exp. Bot. 55: 282–293, 2006.CrossRefGoogle Scholar
  12. Gong, H.J., Chen, K.M., Chen, G.C., Wang, S.M., Zhang, C.L.: Drought stress stimulates p-nitrophenyl phosphate hydrolysis rate of the plasma membrane H+-ATPase from wheat leaves.-Plant Growth Regul. 40: 139–145, 2003.CrossRefGoogle Scholar
  13. Hellergren, J., Widell, S., Lundborg, T., Kylin, A.: Frost hardiness development in Pinus sylvestris: the involvement of a K+-stimulated Mg2+-dependent ATPase from purified plasma membranes of pine.-Physiol. Plant. 58: 7–12, 1983.CrossRefGoogle Scholar
  14. Iswari, S., Palta, J.P.: Plasma membrane ATPase activity following reversible and irreversible freezing injury.-Plant Physiol. 90: 1088–1095, 1989.PubMedCrossRefGoogle Scholar
  15. Michelet, B., Boutry, M.: The plasma membrane H+-ATPase: a highly regulated enzyme with multiple physiological functions.-Plant Physiol. 108: 1–6, 1995.PubMedGoogle Scholar
  16. Morandini, P., Valera, M., Albumi, C., Bonza, M.C., Giacometti, J.M.S., Ravera, G., Murgia, I., Soave, C., Michelis, M.: A novel interaction partner for the C-terminus of Arabidopsis thaliana plasma membrane H+-ATPase (AHA1 isoform): site and mechanism of action on H+-ATPase activity differ from those of 14-3-3 proteins.-Plant J. 31: 487–497, 2002.PubMedCrossRefGoogle Scholar
  17. Morsomme, P., Boutry, M.: The plant plasma membrane H+-ATPase: structure, function and regulation.-Biochim. biophys. Acta 1465: 1–16, 2000.PubMedCrossRefGoogle Scholar
  18. Palmgren, M.G.: Regulation of plant plasma membrane H+-ATPase activity.-Physiol. Plant. 83: 314–323, 1991.CrossRefGoogle Scholar
  19. Palmgren, M.G., Larsson, C., Sommarin, M.: Proteolytic activation of the plant plasma membrane H+-ATPase by removal of a terminal segment.-J. biol. Chem. 265: 13423–13426, 1990.Google Scholar
  20. Palmgren, M.G., Sommarin, M., Ulvskov, P., Jorgensen, P.L.: Modulation of plasma membrane H+-ATPase from oat roots by lysophosphatidylcholine, free fatty acids and phospholipase A2.-Physiol. Plant. 74: 11–19, 1988.CrossRefGoogle Scholar
  21. Qiu, Q.S.: Characterization of PNPP hydrolysis by plasma membrane H+-ATPases from soybean hypocotyls.-J. Plant Physiol. 154: 628–633, 1999.Google Scholar
  22. Qiu, Q.S., Su, X.F.: The influence of extracellular-side Ca2+ on the activity of the plasma membrane H+-ATPase from wheat roots.-Aust. J. Plant Physiol. 25: 923–928, 1998.CrossRefGoogle Scholar
  23. Qiu, Q.S., Zhang, N.: Water stress inhibits p-nitrophenyl phosphate hydrolysis activity of the plasma membrane H+-ATPase from soybean hypocotyls.-Aust. J. Plant Physiol. 27: 717–721, 2000.Google Scholar
  24. Qiu, Q.S., Zhang, N.: Effect of lysophosphatidylcholine on ATP and p-nitrophenyl phosphate hydrolysis by the plasma membrane H+-ATPase from soybean hypocotyls.-Acta bot. sin. 43: 1140–1145, 2001.Google Scholar
  25. Rodriguez-Rosales, M.P., Kerkeb, L., Bueno, P., Donaire, J.P.: Changes induced by NaCl in lipid content and composition, lipoxygenase, plasma membrane H+-ATPase and antioxidant enzyme activities of tomato (Lycopersicon esculentum Mill.) calli.-Plant Sci. 143: 143–150, 1999.CrossRefGoogle Scholar
  26. Serrano, R.: Structure and function of plasma membrane ATPase.-Annu. Rev. Plant Physiol. Plant mol. Biol. 40: 61–94, 1989.CrossRefGoogle Scholar
  27. Steponkus, P.L.: Role of the plasma membrane in freezing injury and cold acclimation.-Annu. Rev. Plant Physiol. 35: 543–586, 1984.CrossRefGoogle Scholar
  28. Suwastika, I.N., Gehring, C.A.: The plasma membrane H+-ATPase from Tradescantia stem and leaf tissue is modulated in vitro by cGMP.-Arch. Biochem. Biophys. 367: 137–139, 1999.PubMedCrossRefGoogle Scholar
  29. Vara, F., Serrano, R.: Phosphorylated intermediate of the ATPase of plant plasma membranes.-J. biol. Chem. 258: 5334–5336, 1983.PubMedGoogle Scholar
  30. Widell, S., Larsson, C.: A critical evaluation of markers used in plasma membrane purification.-In: Larsson, C., Moller, I.M.: The Plant Plasma Membrane. Pp. 16–43. Springer-Verlag, Berlin 1990.Google Scholar
  31. Yan, F., Zhu, Y.Y., Muller, C., Zorb, C., Schubert, S.: Adaptation of H+-pumping and plasma membrane H+-ATPase activity in proteoid roots of white lupin under phosphate deficiency.-Plant Physiol. 129: 50–63, 2002.PubMedCrossRefGoogle Scholar
  32. Yang, Y.L., Guo, J.K., Zhang, F., Zhao, L.Q., Zhang, L.X.: NaCl induced changes of the H+-ATPase in root plasma membrane of two wheat cultivars.-Plant Sci. 166: 913–918, 2004.CrossRefGoogle Scholar
  33. Zhang, N., Qiu, Q.S.: The effect of trypsin treatment on plasma membrane H+-ATPase from soybean hypocotyls.-J. Beijing normal Univ. 36: 390–393, 2000.Google Scholar
  34. Zhao, L.Q., Zhang, F., Guo, J.K., Yang, Y.L., Li, B.B., Zhang, L.X.: Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed.-Plant Physiol. 134: 849–857, 2004.PubMedCrossRefGoogle Scholar
  35. Zhao, S., Colombo, S.J., Blumwald, E.: The induction of freezing tolerance in jack pine seedling: The role of root plasma membrane H+-ATPase and redox activities.-Physiol. Plant. 93: 55–60, 1995.CrossRefGoogle Scholar

Copyright information

© Institute of Experimental Botany, ASCR 2007

Authors and Affiliations

  • J. M. Wu
    • 1
  • Z. G. Zhao
    • 1
  • H. Xing
    • 3
  • H. P. Guo
    • 1
  • W. X. Li
    • 1
  • L. Z. An
    • 1
    • 2
  • S. J. Xu
    • 1
  • T. Chen
    • 2
  1. 1.Key Laboratory of Arid and Pasture Agroecology of Ministry of EducationLanzhou UniversityLanzhouP.R. China
  2. 2.Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of ScienceLanzhouP.R. China
  3. 3.College of AgronomyGansu Agriculture UniversityLanzhouP.R. China

Personalised recommendations