Biologia Plantarum

, 51:86 | Cite as

Superoxide dismutase activity in C3 and C3/CAM intermediate species of Clusia

  • Z. MiszalskiEmail author
  • A. Kornas
  • K. Gawronska
  • I. Ślesak
  • E. Niewiadomska
  • J. Kruk
  • A. L. Christian
  • E. Fischer-Schliebs
  • R. Krisch
  • U. Lüttge
Original Papers


The C3-CAM intermediate Clusia minor L. and the C3 obligate Clusia multiflora H.B.K. plants were exposed for 7 d to a combination of drought stress and high irradiance of about 1200 µmol m−2 s−1 for 12 h per day. In both species under these conditions a strong decrease in stomatal conductance was observed at dawn and dusk. Changes in stomatal behaviour of C. minor were accompanied by only a low nocturnal accumulation of malate and citrate. Thus, in C. minor drought stress applied in combination with high irradiance limited CAM expression, and possibly this is the main reason why C. minor prefers semi-shaded sites in the field. The mitochondrial MnSOD, in both well watered and stressed plants of two species showed strong diurnal oscillations with maximum activity at dusk. These oscillations can be explained by the engagement of mitochondria in dissipation of an excess of reducing equivalents. In plants which are able to carry out CAM metabolism tricarboxylic acid cycle is expected to be down regulated in the dark period to prevent breakdown of the entire malate and citrate.

Additional key words

Crassulacean acid metabolism oxidative stress stomata 





bovine serum albumin


cytochrome c oxidase


CuZn-superoxide dismutase




epoxidation state of the xanthophyll cycle pigments


stomatal conductance


ethylenediaminetetraacetic acid


N-(2-hydroxyethyl)piperazine-N′-(ethanesulphonic acid)


Mn-superoxide dismutase


polyacrylamide gel electrophoresis


polyethylene glycol


phosphoenolpyruvate carboxylase


photon flux density




reactive oxygen species

TCA cycle

tricarboxylic acid cycle






  1. Adams III, W.W., Demmig-Adams, B.: Operation of the xanthophylls cycle in higher plants in response to diurnal changes in incident sunlight.-Planta 186: 390–398, 1992.CrossRefGoogle Scholar
  2. Bartosz, G.: Oxidative stress in plants.-Acta Physiol. Plant. 19: 47–64, 1997.CrossRefGoogle Scholar
  3. Beauchamp, C., Fridovich, I.: Superoxide dismutase: improved assays and an assay applicable to acrylamide gels.-Anal. Biochem. 44: 276–287, 1971.PubMedCrossRefGoogle Scholar
  4. Borland, A.M., Griffiths, H.: A comparative study on the regulation of C3 and C4 carboxylation processes in the constitutive crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana and the C3-CAM intermediate species Clusia minor.-Planta 201: 368–378, 1997.CrossRefPubMedGoogle Scholar
  5. Borland, A.M., Griffiths, H., Broadmeadow, M.S.J., Fordham, M.C., Maxwell, C.: Short term changes in carbon-isotope discrimination in the C3/CAM intermediate Clusia minor L. growing in Trinidad.-Oecologia 95: 444–453, 1993.CrossRefGoogle Scholar
  6. Borland, A.M., Griffiths, H., Maxwell, C., Fordham, M.C., Broadmeadow, M.S.J.: CAM induction in Clusia minor L. during the transition from wet to dry season in Trinidad: the role of organic acid speciation and decarboxylation.-Plant Cell Environ. 19: 655–664, 1996.CrossRefGoogle Scholar
  7. Borland, A.M., Técsi, L.I., Leegood, R.C., Walker, R.P.: Inducibility of crassulacean acid metabolism (CAM) in Clusia species; physiological/biochemical characterisation and intercellular localisation of carboxylation and decarboxylation processes in three species which exhibit different degrees of CAM.-Planta 205: 342–351, 1998.CrossRefGoogle Scholar
  8. Bradford, M.M.: A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding.-Anal. Biochem. 72: 248–254, 1976.PubMedCrossRefGoogle Scholar
  9. Broetto, F., Lüttge, U., Ratajczak, R.: Influence of light intensity and salt-treatment on mode of photosynthesis and enzymes of the antioxidative response system of Mesembryanthemum crystallinum.-Funct. Plant Biol. 29: 13–23, 2002.CrossRefGoogle Scholar
  10. Dat, J., Vandenabeele, S., Vranová, E., Van Montagu, M., Inzé, D., Van Breusegem, F.: Dual action of active oxygen species during plant stress responses.-Cell mol. Life Sci. 57: 779–795, 2000.PubMedCrossRefGoogle Scholar
  11. De Mattos, E.A., Herzog, B., Lüttge, U.: Chlorophyll fluorescence during CAM-phases in Clusia minor L. under drought stress.-J. exp. Bot. 50: 253–261, 1999.CrossRefGoogle Scholar
  12. De Mattos, E.A., Lüttge, U.: Chlorophyll fluorescence and organic acid oscillations during transition from CAM to C3-photosynthesis in Clusia minor L. (Clusiaceae).-Ann. Bot. 88: 457–463, 2001.CrossRefGoogle Scholar
  13. Demmig-Adams, B., Adams III, W.W.: Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species.-Planta 198: 460–470, 1996.CrossRefGoogle Scholar
  14. Dodd, A.N., Griffiths, H., Taybi, T., Cushman, J.C., Borland, A.M.: Integrated diel starch metabolism with the circadian and environmental regulation of Crassulacean acid metabolism in Mesembryanthemum crystallinum.-Planta 216: 789–797, 2002.PubMedGoogle Scholar
  15. Franco, A.C., Ball, E., Lüttge, U.: Patterns of gas exchange and organic acid oscillations in tropical trees of the genus Clusia.-Oecologia 85: 108–114, 1990.CrossRefGoogle Scholar
  16. Franco, A.C., Lüttge, U.: Midday depression in savana trees: coordinated adjustments in photochemical efficiency, photorespiration, CO2 assimilation and water use efficiency.-Oecologia 131: 356–365, 2002.CrossRefGoogle Scholar
  17. Halliwell, B., Gutteridge, J.M.C.: Free Radicals in Biology and Medicine.-Clarendon Press, Oxford 1999.Google Scholar
  18. Hernández, J.A., Escobar, C., Creissen, G., Mullineaux, P.M.: Antioxidant enzyme induction in pea plants under high irradiance.-Biol. Plant. 50: 395–399, 2006.CrossRefGoogle Scholar
  19. Herzog, B., Hoffmann, S., Hartung, W., Lüttge, U.: Comparison of photosynthetic responses of the sympatric tropical C3 species Clusia multiflora H.B.K. and the C3-CAM intermediate species Clusia minor L. to irradiance and drought stress in a phytotron.-Plant Biol. 1: 460–470, 1999.Google Scholar
  20. Holtum, J.A.M., Aranda, J., Virgo, A., Gehrig, H.H., Winter, K.: δ13C values and crassulacean acid metabolism in Clusia species from Panama.-Trees 18: 658–668, 2004.CrossRefGoogle Scholar
  21. Hong, H.T.K., Nose, A., Agarie, S., Oxidation of various substrates and effects of the inhibitors on purified mitochondria isolated from Kalanchoë pinnata.-Biol. Plant. 49: 201–208, 2005.CrossRefGoogle Scholar
  22. Inzé, D., Van Montagu, M.: Oxidative stress in plants.-Curr. Opin. Biotechnol. 6: 153–158, 1995.CrossRefGoogle Scholar
  23. Kato, J., Yamahara, T., Tanaka, K., Takio, S., Satoh, T.: Characterization of catalase from green algae Chlamydomonas reinhardtii.-J. Plant Physiol. 151: 262–268, 1997.Google Scholar
  24. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head bacteriophage T4.-Nature 227: 680–685, 1970.PubMedCrossRefGoogle Scholar
  25. Lüttge, U.: Nocturnal citrate accumulation and its response to environmental stress in the CAM plant Kalanchoe pinnata (Lam.) Pers.-Plant Cell Environ. 13: 977–982, 1990.CrossRefGoogle Scholar
  26. Lüttge, U.: One morphotype, three physiotypes: sympatric species of Clusia with obligate C3 photosynthesis, obligate CAM and C3-CAM intermediate behaviour.-Plant Biol. 1: 138–148, 1999.Google Scholar
  27. Lüttge, U.: Light-stress and crassulacean acid metabolism.-Phyton (Austria) 40: 65–82, 2000.Google Scholar
  28. Lüttge, U.: CO2-concentrating: consequences in crassulacean acid metabolism.-J. exp. Bot. 53: 2131–2142, 2002.PubMedCrossRefGoogle Scholar
  29. Lüttge, U. Photosynthesis: CAM plants.-In: Thomas, B., Murphy, D.J., Murray, B.G. (ed.): Encyclopedia of Applied Plant Sciences. Pp. 688–704. Academic Press, Oxford 2003.Google Scholar
  30. Maxwell, K., Borland, A.M., Haslam, R.P., Helliker, B.R., Roberts, A., Griffiths, H.: Modulation of Rubisco activity during the diurnal phases of the crassulacean acid metabolism plant Kalanchoe daigremontiana.-Plant Physiol. 121: 849–856, 1999.PubMedCrossRefGoogle Scholar
  31. Miszalski, Z., Kluge, M., Ziegler, H.: Stimulatory effect of sulphite on photosynthetic 14CO2-fixation in Kalanchoe dagremontiana Hamet et Perier.-J. Plant Physiol. 151: 535–540, 1997.Google Scholar
  32. Miszalski, Z., Niewiadomska, E., Ślesak, I., Lüttge, U., Kluge, M., Ratajczak, R.: The effect of irradiation on carboxylating/decarboxylating enzymes and fumarase activities in Mesembryanthemum crystallinum L., exposed to salinity stress.-Plant Biol. 3: 17–23, 2001.CrossRefGoogle Scholar
  33. Miszalski, Z., Ślesak, I., Niewiadomska, E., Baczek-Kwinta, R., Lüttge, U., Ratajczak, R.: Subcellular localization and stress responses of superoxide dismutase isoforms from leaves in the C3-CAM intermediate halophyte Mesembryanthemum crystallinum L.-Plant Cell Environ. 21:169–179, 1998.CrossRefGoogle Scholar
  34. Mittler, R.: Oxidative stress, antioxidative stress tolerance.-Trends Plant Sci. 7: 405–410, 2002.PubMedCrossRefGoogle Scholar
  35. Möllering, H.: Malat: Bestimmung mit Malat-Dehydrogenase und Glutamat-Oxalacetat-Transaminase.-In: Bergmeyer, H.U. (ed.): Methoden der Enzymologie. Pp. 1636–1639. Academic Press, New York 1974.Google Scholar
  36. Möllering, H.: Citrate. Determination with citrate lyase, MDH and LDH.-In: Bergmeyer H.U. (ed.): Methods of Enzymatic Analysis. Pp. 2–12. Academic Press, New York 1985.Google Scholar
  37. Niewiadomska, E., Karpinska, B., Romanowska, E., Ślesak, I., Karpinski, S.: A salinity-induced C3-CAM transition increases energy conservation in the halophyte Mesembryanthemum crystallinum L.-Plant Cell Physiol. 45: 789–794, 2004.PubMedCrossRefGoogle Scholar
  38. Niewiadomska, E., Miszalski, Z., Ślesak, I., Ratajczak, R.: Catalase activity during C3-CAM transition in Mesembryanthemum crystallinum L. leaves.-Free Radical Res. 31: S251–256, 1999.CrossRefGoogle Scholar
  39. Nyman, L.P., Benzing, D.H., Temple, P.J., Arditti, J.: Effects of ozone and sulfur dioxide on two epiphytic orchids.-Environ. exp. Bot. 30, 207–213, 1990.CrossRefGoogle Scholar
  40. Olivares, E., Faist, K., Kluge, M., Lüttge, U.: 14CO2 pulse-chase labelling in Clusia minor L.-J. exp. Bot. 45: 1527–1533, 1993.CrossRefGoogle Scholar
  41. Olszyk, D.M., Bytnerowicz, A., Fox, C.A.: Sulfur dioxide effects on plants exhibiting Crassulacean acid metabolism.-Environ. Pollut. 43: 47–62, 1987.PubMedCrossRefGoogle Scholar
  42. Osmond, C.B.: Crassulacean acid metabolism: a curiosity in context.-Annu. Rev. Plant Physiol. 29: 379–414, 1978.CrossRefGoogle Scholar
  43. Perl-Treves, R., Perl, A.: Oxidative stress an introduction.-In: Inzé, D., Van Montagu, M. (ed.): Oxidative Stress in Plants. Pp. 1–32. Taylor and Francis, London 2002.Google Scholar
  44. Roberts, A., Borland, A.M., Maxwell, K., Griffiths, H.: Ecophysiology of the C3-CAM intermediate Clusia minor L. in Trinidad: seasonal and short-term photosynthetic characteristics of sun and shade leaves.-J. exp. Bot. 49: 1563–1573, 1998.CrossRefGoogle Scholar
  45. Scandalios, J.G.: Oxygen stress and superoxide dismutases.-Plant Physiol. 101: 7–12, 1993.PubMedGoogle Scholar
  46. Ślesak, I., Miszalski, Z.: Superoxide dismutase-like protein from roots of the intermediate C3-CAM plant Mesembryanthemum crystalinum L. in in vitro culture.-Plant Sci. 164: 497–505, 2003.CrossRefGoogle Scholar
  47. Ślesak, I., Miszalski, Z., Karpinska, B., Niewiadomska, E., Ratajczak, R., Karpinski, S.: Redox control of oxidative stress responses in the C3-CAM intermediate plant Mesembryanthemum crystallinum.-Plant Physiol. Biochem. 40: 669–677, 2002.CrossRefGoogle Scholar
  48. Spalding, M.H., Stumpf, D.K., Ku, M.S.B., Burris, R.H., Edwards, G.E.: Crassulacean acid metabolism and diurnal variations of internal CO2 and O2 concentrations in Sedum praealtum DC.-Aust. J. Plant Physiol. 6: 557–567, 1979.CrossRefGoogle Scholar
  49. Thayer, S.S., Björkman, O.: Leaf xanthophylls content and composition in sun and shade determinated by HPLC.-Photosynth. Res. 23: 331–343, 1990.CrossRefGoogle Scholar
  50. Van Lis, R., Atteia, A.: Control of mitochondrial function via photosynthetic redox signals.-Photosynth. Res. 79:133–148, 2004.PubMedCrossRefGoogle Scholar
  51. Volin, J.C., Reich, P.B.: Interaction of elevated CO2 and O3 in growth, photosynthesis and respiration of three perennial species grown at low and high nitrogen.-Physiol. Plant. 97: 674–684, 1996.CrossRefGoogle Scholar

Copyright information

© Institute of Experimental Botany, ASCR 2007

Authors and Affiliations

  • Z. Miszalski
    • 1
    • 2
    Email author
  • A. Kornas
    • 1
  • K. Gawronska
    • 1
  • I. Ślesak
    • 2
  • E. Niewiadomska
    • 2
  • J. Kruk
    • 3
  • A. L. Christian
    • 4
  • E. Fischer-Schliebs
    • 4
  • R. Krisch
    • 4
  • U. Lüttge
    • 4
  1. 1.Institute of BiologyPedagogical UniversityKrakowPoland
  2. 2.Institute of Plant PhysiologyPolish Academy of SciencesKrakowPoland
  3. 3.Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
  4. 4.Institute of BotanyDarmstadt University of TechnologyDarmstadtGermany

Personalised recommendations