Biologia Plantarum

, Volume 50, Issue 3, pp 461–464 | Cite as

Phenolics, lignin content and peroxidase activity in Picea omorika lines

  • J. Bogdanovic
  • D. Dikanovic
  • V. Maksimovic
  • S. Tufegdzic
  • D. Dokovic
  • V. Isajev
  • K. Radotic
Brief Communication

Abstract

We analyzed low molecular mass phenolics, lignin content and both soluble and cell wall bound peroxidase activity in the needles of three Picea omorika (Pancic) Purkyne lines grown in the generative seed orchard. The highest values of the total phenol content as well as of catechine, caffeic acid, coniferyl alcohol, isoferulic acid and lignin concentration were detected in B5 line (“semidichotomy” line). The soluble guaiacol peroxidase activity was the highest in A3 line (line “borealis”). The highest activity of cell wall bound peroxidases was measured in B5 line, and it was in correlation with lignin content.

Additional key words

guaiacol peroxidase omorika pollution stress 

Abbreviations

DHP

dehydrogenate polymer

EDTA

ethylenediaminotetraacetic acid

GC-MS

gas chromatography with mass spectrometry

HPLC

high performance liquid chromatography

LTGA

lignin-thioglycolic acid complex

POD

peroxidase

PVP

polyvinylpyrrolidone

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernardi, R., Nali, C., Ginestri, P., Pugliesi, C., Lorenzini, G., Durante, M.: Antioxidant enzyme isoforms on gels in two poplar clones differing in sensitivity after exposure to ozone.-Biol. Plant. 48: 41–48, 2004.CrossRefGoogle Scholar
  2. Bisbis, B., Kevers, C., Crevecoeur, M., Dommes, J., Gaspar, T.: Restart of lignification in micropropagated walnut shoots coincides with rooting induction.-Biol. Plant. 47: 1–5, 2003/4.Google Scholar
  3. Brignolas, F., Lieutier, F., Sauvard, D., Yart, A., Drouet, A., Claudot, A.C.: Changes in soluble phenol content of Norway spruce (Picea abies) phloem in response to wounding and inoculation with Ophiostoma polonicum.-Eur. J. Forest Pathol. 25: 253–265, 1995.Google Scholar
  4. Bunzel, M., Ralph, J., Funk, C., Steinhart, H.: Isolation and identification of a ferulic acid dehydrotrimer from saponified maize bran insoluble fiber.-Eur. Food Res. Technol. 217: 128–133, 2003.CrossRefGoogle Scholar
  5. Castillo, F.J.: Extracellular peroxidases as markers of stress?-In: Grepin, H., Penel, C., Gaspar T. (ed.): Molecular and Physiological Aspects of Plant Peroxidases. Pp. 419–426. University of Geneva, Geneva 1986.Google Scholar
  6. Chen, M., Sommer, A.J., McClure, J.W.: Fourier transform-IR determination of protein contamination in thioglycolic acid lignin from radish seedlings, and improved methods for extractive-free cell wall preparation.-Phytochem. Anal. 11: 153–159, 2000.Google Scholar
  7. Dean, J.F.D.: Lignin analysis.-In: Dashek, W.V. (ed.): Plant Biochemistry/Molecular Biology Laboratory Manual. Pp. 199–215. CRC Press, Boca Raton 1997.Google Scholar
  8. Fry, S.C.: Feruloylated pectins from the primary cell wall: their structure and possible functions.-Planta 157: 111–123, 1983.CrossRefGoogle Scholar
  9. Giertych, M.J., Karolewski, P.: Changes in phenolic compounds content in needles of Scots pine (Pinus sylvestris L.) seedlings following short-term exposition to sulphur dioxide.-Arbor. kornickie 38. 43–51, 1993.Google Scholar
  10. Graf, E.: Antioxidative potential of ferulic acid.-Free Radical Biol. Med. 13. 435–448, 1992.CrossRefGoogle Scholar
  11. Hartling, S., Schulz, H.: Biochemical parameters as biomarkers for the early recognition of environmental pollution in Scots pine trees. I. Phenolic compounds.-Z. Naturforsch. 53c: 331–340, 1998.Google Scholar
  12. Hatfield, R.D., Ralph, J., Grabber, J.H.: Cell wall cross-linking by ferulates and diferulates in grasses.-J. Sci. Food Agr. 79: 403–407, 1999.Google Scholar
  13. Heller, W., Roseman, D., Osswald, W.F., Benz, B., Schonwitz R., Lohwasser, K., Kloos, M., Sandermann, H.: Biochemical response of Norway spruce (Picea abies (L.) Karst.) towards 14-month exposure to ozone and acid mist: — effects on polyphenol and monoterpene metabolism.-Environ. Pollut. 64: 353–366, 1990.CrossRefPubMedGoogle Scholar
  14. Iiyama, K., Lam, T.B., Stone, B.A.: Covalent cross links in the cell wall.-Plant Physiol. 104: 315–320, 1994.PubMedGoogle Scholar
  15. Karolewski, P., Giertych, M.J.: Changes in the level of phenols during needle development in Scots pine populations in a control and polluted environment.-Eur. J. Forest Pathol. 25: 297–306, 1995.Google Scholar
  16. Kahkonen, M.P., Hopia, A.I., Vuorela, H.J., Rauha, J.-P., Pihlaja, K., Kujala, T.S., Heinonen, M.: Antioxidant activity of plant extracts containing phenolic compounds.-J. Agr. Food Chem. 47: 3954–3962, 1999.CrossRefGoogle Scholar
  17. Kral, D.: Assessing the growth of Picea omorika [Panc.] Purkyne in the Masaryk forest training forest enterprise at Krtiny.-J. Forest Sci. 48: 388–398, 2002.Google Scholar
  18. Lam, T.B.T., Iliyama, K., Stone, B.A.: Cinnamic acid bridges between cell wall polymers in wheat and phalaris internodes.-Phytochemistry 31: 1179–1183, 1992.Google Scholar
  19. Lewis, N.G., Yamamoto, E.: Lignin: occurrence, biogenesis and biodegradation.-Annu. Rev. Plant Physiol. Plant. mol. Biol. 41: 455–496, 1990.CrossRefPubMedGoogle Scholar
  20. McDougal, G.J.: Cell wall-associated peroxidases and lignification during growth of flax fibres.-J. Plant Physiol. 139: 182–186, 1991.Google Scholar
  21. McDougal, G.J.: Changes in cell wall-associated peroxidases during the lignification of flax fibres.-Phytochemistry 31: 3385–3389, 1992.Google Scholar
  22. Morrison, I.M.: A semi-micro method for the determination of lignin and its use in predicting the digestibility of forage crops.-Sci. Food Agr. 23: 455–463, 1972.Google Scholar
  23. Otter, T., Polle, A.: The influence of apoplastic ascorbate on the activities of cell-wall associated peroxidase and NADH oxidase in needles of Norway spruce (Picea abies L.).-Plant Cell Physiol. 35: 1231–1238, 1994.Google Scholar
  24. Polle, A., Otter, T., Seifert, F.: Apoplastic peroxidases and lignification in needles of Norway spruce (Picea abies L.).-Plant Physiol. 106: 53–60, 1994.PubMedGoogle Scholar
  25. Singleton, V.L., Rossi, J.A.: Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents.-Amer. J. Enol. Viticult. 16: 144–158, 1965.Google Scholar
  26. Strack, D., Heilemann, J., Wray, V., Dirks, H.: Structures and accumulation patterns of soluble and insoluble phenolics from Norway spruce needles.-Phytochemistry 28: 2071–2078, 1988.Google Scholar
  27. Takahama, U., Oniki, T.: Effects of ascorbate on the oxidation of derivatives of hydroxycinnamic acid and the mechanism of oxidation of sinapic acid by cell wall-bound peroxidases.-Plant Cell Physiol. 35: 593–600, 1994.Google Scholar

Copyright information

© Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Praha 2006

Authors and Affiliations

  • J. Bogdanovic
    • 1
  • D. Dikanovic
    • 1
  • V. Maksimovic
    • 1
  • S. Tufegdzic
    • 2
  • D. Dokovic
    • 3
  • V. Isajev
    • 4
  • K. Radotic
    • 1
  1. 1.Centre for Multidisciplinary StudiesUniversity of BelgradeBelgradeSerbia
  2. 2.Institute of Chemistry, Technology and MetallurgyBelgradeSerbia
  3. 3.Faculty of ChemistryUniversity of BelgradeBelgradeSerbia
  4. 4.Faculty of ForestryUniversity of BelgradeBelgradeSerbia

Personalised recommendations