Advertisement

Biologia Plantarum

, Volume 50, Issue 2, pp 232–238 | Cite as

Further biological characteristics of galactoglucomannan oligosaccharides

  • K. Kollarova
  • D. Liskova
  • P. Capek
Article

Abstract

The biological activity of cell wall-derived galactoglucomannan oligosaccharides (GGMOs) was dependent on their chemical structure. Galactosyl side chains linked to the glucomanno-core influenced their inhibition of elongation growth of pea (Pisum sativum L. cv. Tyrkys) stem segments induced by 2,4-dichlorophenoxyacetic acid (2,4-D). Reduction of the number of galactosyl side chains in GGMOs caused stimulation of the endogenous growth. Modification on the glucomanno-reducing end did not affect significantly the activity of these oligosaccharides. GGMOs inhibited also the elongation induced by indole-3-acetic acid (IAA) and gibberellic acid (GA3). In the presence of IAA the elongation growth was inhibited to 20 – 35 % after 24 h of incubation depending on GGMOs concentrations (1 μM, 10 nM, 0.1 nM), similarly as in the presence of 2,4-D, which confirms the hypothesis of GGMOs antiauxin properties. The elongation induced by GA3 was inhibited to 25 – 60 %, however, the time course of inhibition was different compared with IAA and 2,4-D. The highest inhibition was determined already after 6 h of incubation with a significant decrease after this time. The results indicated a competition between GGMOs and growth regulators.

Additional key words

biologically active oligosaccharides 2,4-D elongation growth GA3 IAA Pisum sativum 

Abbreviations

2,4-D

2,4-dichlorophenoxyacetic acid

GGM

galactoglucomannan

GGMOs

galactoglucomannan oligosaccharides

GA3

gibberellic acid

IAA

indole-3-acetic acid

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akiyama, Y., Eda, S., Hori, M., Kato, K.: A galactoglucomannan from extracellular polysaccharides of suspension-cultured cells of Nicotiana tabacum.-Phytochemistry 22: 1177–1180, 1983.CrossRefGoogle Scholar
  2. Altamura, M.M., Zaghi, D., Salvi, G., De Lorenzo, G., Bellincampi, D.: Oligogacturonides stimulate pericycle cell wall thickening and cell divisions leading to stoma formation in tobacco leaf explants.-Planta 204: 429–436, 1998.CrossRefGoogle Scholar
  3. Ariens, E.J., Simonis A.M., Van Rossum, J.M.: Drug-receptor interaction: Interaction of one or more drugs with one receptor system.-In: Ariens, E.J. (ed.): Molecular Pharmacology. Pp. 119–286. Academic Press, New York 1964a.Google Scholar
  4. Ariens, E.J., Simonis A.M., Van Rossum, J.M.: Drug-receptor interaction: Interaction of one or more drugs with different receptor systems.-In: Ariens, E.J. (ed.): Molecular Pharmacology. Pp. 287–393. Academic Press, New York 1964b.Google Scholar
  5. Auxtova, O., Liskova, D., Kakoniova, D., Kubackova, M., Karacsonyi, S., Bilisics, L.: Effect of galactoglucomannan-derived oligosaccharides on elongation growth of pea and spruce stem segments stimulated by auxin.-Planta 196: 420–424, 1995.Google Scholar
  6. Auxtova-Samajova, O., Liskova, D., Kakoniova, D., Kubackova, M., Karacsonyi, S., Bilisics, L.: Inhibition of auxin stimulated short-term elongation growth of pea stem segments by galactoglucomannan-derived oligosaccharides.-J. Plant Physiol. 147: 611–613, 1996.Google Scholar
  7. Barratt, N.M., Davies, P.J.: Developmental changes in the gibberellin-induced growth response in stem segments of light-grown pea genotypes.-Plant Growth Regul. 21: 127–134, 1997.CrossRefGoogle Scholar
  8. Baureithel, K., Felix, G., Boller, T.: Specific, high affinity binding of chitin fragments to tomato cells and membranes. Competitive inhibition of binding by derivatives of chitin fragments and a nod factor of Rhizobium.-J. biol. Chem. 269: 17931–17938, 1994.PubMedGoogle Scholar
  9. Bellincampi, D., Salvi, G., De Lorenzo, G., Cervone, F., Marfa, V., Eberhard, S., Darvill, A.G., Albersheim, P.: Oligogacturonides inhibit the formation of roots on tobacco explants.-Plant J. 4: 207–213, 1993.CrossRefGoogle Scholar
  10. Bilisics, L., Kubackova, M.: Biosynthesis of water-soluble metabolites of UDP-D-galactose containing D-galactose by an enzymic preparation isolated from tissue culture of poplar (Populus alba L., var. pyramidalis).-Collect. Czech. Chem. Commun. 54: 819–833, 1989.CrossRefGoogle Scholar
  11. Bilisics, L., Vojtassak, J., Capek, P., Kollarova, K., Liskova, D.: Changes in glycosidase activities during galactoglucomannan oligosaccharide inhibition of auxin induced growth.-Phytochemistry 65: 1903–1909, 2004.PubMedCrossRefGoogle Scholar
  12. Branca, C., De Lorenzo, G., Cervone, F.: Competitive inhibition of the auxin-induced elongation by α-D-oligogalacturonides in pea stem segments.-Physiol. Plant. 72: 499–504, 1988.Google Scholar
  13. Capek, P., Kubackova, M., Alfoldi, J., Bilisics, L., Liskova, D., Kakoniova, D.: Galactoglucomannan from the secondary cell wall of Picea abies L. Karst.-Carbohydr. Res. 329: 635–645, 2000.PubMedCrossRefGoogle Scholar
  14. Cheong, J.J., Birberg, W., Fugedi, P., Pilotti, A., Garegg, P.J., Hong, N., Ogawa, T., Hahn, M.G.: Structure-activity relationships of oligo-β-glucoside elicitors of phytoalexin accumulation in soybean.-Plant Cell 3: 127–136, 1991.PubMedGoogle Scholar
  15. Dey, P.M.: D-Galactoglucomannans.-Adv. Carbohydr. Chem. Biochem. 37: 337–339, 1980.CrossRefGoogle Scholar
  16. Dubois, M., Gilles, K.A., Hamilton, K.J., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances.-Anal. Chem. 28: 350–356, 1956.CrossRefGoogle Scholar
  17. Dunand, C., Gautier, C., Chambat, G., Lienart, Y.: Characterization of the binding of α-L-Fuc (1→2)-β-D-Gal (1→) a xyloglucan signal, in blackberry protoplasts.-Plant Sci. 151: 183–192, 2000.PubMedCrossRefGoogle Scholar
  18. Esquerre-Tugaye, M.T., Boudart, G., Dumas, B.: Cell wall degrading enzymes, proteins, and oligosaccharides participate in the molecular dialogue between plants and pathogens.-Plant Physiol. Biochem. 38: 157–163, 2000.Google Scholar
  19. Fry, S.C.: Structure and functions of xyloglucan.-J. exp. Bot. 40: 1–11, 1989.Google Scholar
  20. Fry, S.C., Aldington, S., Hetherington, P.R., Aitken, J.: Oligosaccharides as signals and substrates in the plant cell wall.-Plant Physiol. 103: 1–5, 1993.PubMedCrossRefGoogle Scholar
  21. Hoson, T., Masuda, Y.: Effect of xyloglucan nonasaccharide on cell elongation induced by 2,4-dichlorophenoxyacetic acid and indole-3-acetic acid.-Plant Cell Physiol. 32: 777–782, 1991.Google Scholar
  22. John, M., Rohrig, H., Schmidt, J., Walden, R., Schell, J. Cell signalling by oligosaccharides.-Trends Plant Sci 2: 111–115, 1997.CrossRefGoogle Scholar
  23. Kaku, T., Tabuchi, A., Wakabayashi, K., Hoson, T.: Xyloglucan oligosaccharides cause cell wall loosening by enhancing xyloglucan endotransglucosylase/hydrolase activity in azuki bean epicotyls.-Plant Cell Physiol. 45: 77–82, 2004.PubMedCrossRefGoogle Scholar
  24. Kato-Noguchi, H., Tanaka, Y.: Effects of capsaicin on plant growth.-Biol. Plant. 47: 157–159, 2003/2004.Google Scholar
  25. Kumaravelu, G., Livingstone, V.D., Ramanujam, P.M.: Triacontanol-induced changes in the growth, photosynthetic pigments, cell metabolites, flowering and yield of green gram.-Biol. Plant. 43: 287–290, 2000.CrossRefGoogle Scholar
  26. Liskova, D., Auxtova, O., Kakoniova, D., Kubackova, M., Karacsonyi, S., Bilisics, L.: Biological activity of galactoglucomannan-derived oligosaccharides.-Planta 196: 425–429, 1995.CrossRefGoogle Scholar
  27. Lorences, E.P., McDougall, G.J., Fry, S.C.: Xyloglucan-and cello-oligosaccharides, antagonists of the growth-promoting effect of H+.-Physiol. Plant. 80: 109–113, 1990.CrossRefGoogle Scholar
  28. McDougall, G.J., Fry, S.C.: Inhibition of auxin-stimulated growth of pea stem segments by a specific nonasaccharide of xyloglucan.-Planta 175: 412–416, 1988.CrossRefGoogle Scholar
  29. McDougall, G.J., Fry, S.C.: Structure-activity relationships for xyloglucan oligosaccharides with antiauxin activity.-Plant Physiol. 89: 883–887, 1989.PubMedGoogle Scholar
  30. Priem, B., Morvan, H., Hafez, A.M.A., Morvan, C.: Influence of plant glycan of the oligomannoside type on the growth of flax plantlets.-Comp. rend. Acad. Sci. Paris III 311: 411–416, 1990.Google Scholar
  31. Schroder, R., Wegrzyn, T.F., Bolitho, K.M., Redgwell, R.J.: Mannan transglycosylase: a novel enzyme activity in cell walls of higher plants.-Planta 219: 590–600, 2004.PubMedGoogle Scholar
  32. Shibuya, N., Kaku, H., Kuchitsu, K., Maliarik, M.J.: Identification of a novel high-affinity binding site for N-acetylchitooligosaccharide elicitor in the membrane fraction from suspension-cultured rice cells.-FEBS Lett. 329: 75–78, 1993.PubMedCrossRefGoogle Scholar
  33. Slovakova, L., Liskova, D., Capek, P., Kubackova, M., Kakoniova, D., Karacsonyi, S.: Defence responses against TNV infection induced by galactoglucomannan-derived oligosaccharides in cucumber cells.-Eur. J. Plant Pathol. 106: 543–553, 2000.Google Scholar
  34. Spiro, M.D., Ridley, B.L., Eberhard, S., Kates, K.A., Mathieu, Y., O'Neill, M.A., Mohnen, D., Guern, J., Darvill, A., Albersheim, P.: Biological activity of reducing-end-derivatized oligogalacturonides in tobacco tissue cultures.-Plant Physiol. 116: 1289–1298, 1998.PubMedCrossRefGoogle Scholar
  35. Taiz, L., Zeiger, E. (ed.): Plant Physiology.-The Benjamin/Cummings Publishing Company, Redwood City 1991.Google Scholar
  36. Takeda, T., Furuta, Y., Awano, T., Mizuno, K., Mitsuishi, Y., Hayashi, T.: Suppression and acceleration of cell elongation by integration of xyloglucans in pea stem segments.-Proc. nat. Acad. Sci. USA 99: 9055–9060, 2002.PubMedGoogle Scholar
  37. Terzi, I., Kocacaliskan, I., Benlioglu, O., Solak, K.: Effects of juglone on growth of muskmelon seedlings with respect to physiological and anatomical parameters.-Biol. Plant. 47: 317–319, 2003/4.Google Scholar
  38. Warneck, H.M.: Biologische Aktivitat eines aus der Zellwand der Karotte isolierten Xyloglucan-Nonasaccharids. Mogliche Mechanismen der Regulation des Streckungswachstums.-Ph.D. Thesis, University of Tubingen, Tubingen, 1994.Google Scholar
  39. Warneck, H.M., Seitz, H.U.: Inhibition of gibberellic acid-induced elongation-growth of pea epicotyls by xyloglucan oligosaccharides.-J. exp. Bot. 44: 1105–1109, 1993.Google Scholar
  40. York, W.S., Darvill, A.G., Albersheim, P.: Inhibition of 2,4-dichlorophenoxyacetic acid-stimulated elongation of pea stem segments by a xyloglucan oligosaccharide.-Plant Physiol. 75: 295–297, 1984.CrossRefPubMedGoogle Scholar
  41. Zablackis, E., York, W.S., Pauly, M., Hantus, S., Reiter, W.D., Chapple, C.C.S., Albersheim, P., Darvill, A.: Substitution of L-fucose by L-galactose in cell walls of Arabidopsis mur1.-Science 272: 1808–1810, 1996.PubMedGoogle Scholar
  42. Zabotina, O.A., Guryanov, O.P., Malikhov, R.G., Ayupova, D.A., Beldman, G., Voragen, A.J.G., Lozovaya, V.V.: The isolation and biological activity of oligosaccharins from the pea shoots.-Russ. J. Plant Physiol. 42: 366–371, 1995.Google Scholar

Copyright information

© Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Praha 2006

Authors and Affiliations

  1. 1.Institute of ChemistrySlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations