Biologia Plantarum

, Volume 49, Issue 1, pp 157–159 | Cite as

Salt tolerance of two aquatic macrophytes, Pistia stratiotes and Salvinia molesta

Article

Abstract

The physiological responses to NaCl salinity were investigated in two floating aquatic macrophytes, Pistia stratiotes L. and Salvinia molesta L. With the increasing NaCl concentration a decrease in chlorophyll and carotenoid contents was recorded in Salvinia as compared to Pistia. Also a greater increase in H2O2 accumulation and lipid peroxidation was observed in the shoot and root tissues of Salvinia as compared to Pistia. The superoxide dismutase, glutathione reductase, catalase and guaiacol peroxidase activities, and ascorbate and glutathione contents increased in Salvinia and Pistia shoot and root tissues in response to NaCl.

Additional key words

catalase glutathione reductase NaCl-salinity peroxidase superoxide dismutase thiobarbituric acid reactive substance 

Abbreviations

APX

ascorbate peroxidase

CAT

catalase

DHAR

dehydroascorbate reductase

GPX

guaiacol peroxidase

GR

glutathione reductase

SOD

superoxide dismutase

TBARS

thiobarbituric acid reactive substance

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alscher, R.G., Donahde, J.L., Crammer, C.L.: Reactive oxygen species and antioxidants. Relationship in green cells.-Physiol Plant. 100:124–133, 1997.Google Scholar
  2. Arber, A.: The life history of Lemnaceae and of Pistia.-In: Cramer-Heninheim, J. (ed.): Water Plants. Pp. 73–83. Harper Publishing Co., New York 1963.Google Scholar
  3. Arbona, V., Flors, V., Jacas, J., Garcia-Agustin, P., Gomez-Cadenas, A.: Enyzymatic and non-enzymatic antioxidant responses of Carrizo citrange, a salt-sensitive citrus rootstock, to different levels of salinity.-Plant Cell Physiol 44: 388–394, 2003.PubMedGoogle Scholar
  4. Arnon, D.I.: Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris.-Plant Physiol. 24: 1–15, 1949.PubMedGoogle Scholar
  5. Bassi, M., Corroadi, M.J., Realini, M.: Effects of chromium on two fresh water plants, Lemna minor and Pistia stratiotes. I. Morphological observations.-Cytobios 62: 27–38, 1990.Google Scholar
  6. Chance, B., Maehly, A.C.: Assay of catalase and peroxidase.-Methods Enzymol. 2: 764–775, 1955.Google Scholar
  7. Foyer, C.H.: Oxygen metabolism and electron transport in photosynthesis.-In: Scandalios, J. (ed.): Molecular Biology of Free Radical Scavenging Systems. Pp. 587–621. Cold Spring Harbor Laboratory Press, Cold Spring Harbor 1997.Google Scholar
  8. Giannopolitis, C.N., Ries, S.K.: Superoxide dismutase. I. Occurrence in higher plants.-Plant Physiol. 59: 309–314, 1977.PubMedGoogle Scholar
  9. Griffith, O.W.: Determination of glutathione and glutathione disulphide using glutathione reductase and 2-vinylpyridine.-Anal. Biochem. 106: 207–211, 1980.PubMedGoogle Scholar
  10. Heath, R.H., Packer, L.: Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation.-Arch. Biochem. Biophys. 125: 189–198, 1968.PubMedGoogle Scholar
  11. Hendry, G.A.F., Crawford, R.M.M.: Oxygen and environmental stress in plants-an overview.-Proc. roy. Soc. Edinburgh 102B: 1–10, 1994.Google Scholar
  12. Hernandez, J.A., Ferrer, M.A., Jimenez, A., Barcelo, A.R., Sevilla, F.: Antioxidant system of O2/H2O2 production in the apoplast of pea leaves. Its relation with salt induced necrotic lesions in minor veins.-Plant Physiol. 127: 817–831, 2001.PubMedGoogle Scholar
  13. Khan, N.A.: NaCl-inhibited chlorophyll synthesis and associated changes in ethylene evolution and antioxidative enzyme activities in wheat.-Biol. Plant. 47: 437–440, 2003/4.Google Scholar
  14. Oser, B.L.: Hawks Physiological Chemistry.-McGraw Hill, New York 1979.Google Scholar
  15. Panda, S.K., Upadhyay, R.K.: Salt stress injury induces oxidative alterations and antioxidative defence in the roots of Lemna minor L.-Biol. Plant. 48: 249–253, 2004.Google Scholar
  16. Paul, K.P., Thompson, J.E.: Evidence for the accumulation of peroxidised lipids in membranes of senescent cotyledons.-Plant Physiol. 75: 1152–1157, 1984.CrossRefGoogle Scholar
  17. Sagisaka, S.: The occurrence of peroxide in a perennial plants, Populus gelrica.-Plant Physiol. 57: 308–309, 1976.CrossRefPubMedGoogle Scholar
  18. Scandalios, J.G.: The rise of ROS.-Trends biochem. Sci. 27: 483–486, 2002.PubMedGoogle Scholar
  19. Smith, I.K., Vierheller, T.L., Thorne, C.A.: Assay of glutathione reductase in crude tissue homogenates using 5,5′-dithiobis (2-nitrobenzoic acid).-Anal. Biochem. 175: 408–413, 1988.PubMedGoogle Scholar

Copyright information

© Institute of Experimental Botany 2005

Authors and Affiliations

  1. 1.Plant Biochemistry Laboratory, School of Life SciencesAssam (Central) UniversitySilcharIndia
  2. 2.Research Institute for BioresourcesOkayama UniversityKurashikiJapan

Personalised recommendations