Skip to main content
Log in

Growth and ion uptake in Annona muricata and A. squamosa subjected to salt stress

  • Brief Communication
  • Published:
Biologia Plantarum

Abstract

The effects of treatment with NaCl (3, 100 and 300 mM) for 1, 2, 3 and 7 d on plant growth and ion accumulation were analyzed in 2-week and 8-week-old Annona muricata and A. squamosa plants. Fresh mass and root growth inhibition were directly related to the increase in salinity, particularly for A. squamosa. Two-weeks old seedlings were sensitive to 100 and 300 mM NaCl particularly after 7 d, whereas 8-week-old plants were shown to be more resistant to NaCl even at 300 mM NaCl. Na+ and Cl mostly accumulated in young leaves. Our results suggest that A. squamosa is more sensitive than A. muricata to salt stress and that older seedlings of both species are more tolerant than younger seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Allakhverdiev, S.I.A., Sakamoto, A., Nishiyama, Y., Inaba, M., Murata, N.: Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp.-Plant Physiol. 123: 1047–1056, 2000.

    PubMed  CAS  Google Scholar 

  • Asch, F., Dingkuhn, M., Wittstock, C., Dörffling, K.: Sodium and potassium uptake of rice panicles by salinity and season in relation to yield and yield components.-Plant Soil 207: 133–145, 1999.

    Google Scholar 

  • Azevedo, R.A., Alas, R.M., Smith, R.J., Lea, P.J.: Responses of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation in the leaves and roots of wild-type and a catalase-deficient mutant of barley.-Physiol. Plant. 104: 280–292, 1998.

    CAS  Google Scholar 

  • Azevedo-Neto, A.D., Prisco, J.T., Enéas-Filho, J, Lacerda, C.F., Silva, J.V., Costa, P.H.A., Gomes-Filho, E.: Effects of salt stress on plant growth, stomatal response and solute accumulation of different maize genotypes.-Braz. J. Plant Physiol. 16: 31–38, 2004.

    Google Scholar 

  • Bernstein, N., Silk, W.K., Läuchli, A.: Growth and development of sorghum leaves under conditions of NaCl stress.-Planta 191: 433–439, 1993.

    CAS  Google Scholar 

  • Blumwald, E., Aharon, G.S., Apse, P.: Na+ transport in plant cells.-Biochem. biophys. Acta 1465: 140–151, 2000.

    PubMed  CAS  Google Scholar 

  • Ebert, G.: Growth, ion uptake and gas exchange of two Annona species under salt stress.-Angew. Bot. 72: 61–65, 1998.

    CAS  Google Scholar 

  • Fedina, I.S., Georgieva, K., Grigorova, I.: Response of barley seedlings to UV-B radiation as affected by proline and NaCl.-Biol. Plant. 47: 549–554, 2003.

    CAS  Google Scholar 

  • Ho, L.C., Adams, P.: Effect of diurnal changes in salinity of the nutrient solution on the accumulation of calcium in the tomato fruit.-Ann. Bot. 64: 373–82, 1989.

    CAS  Google Scholar 

  • Hoagland, D.R., Arnon, D.I.: The water culture method for growing plants without soil.-Stat. Univ. Calif. Berkeley Circ. 347: 1–32, 1950.

    Google Scholar 

  • Hossain, Z., Mandal, A.K.A., Shukla, R., Datta, S.K.: NaCl stress — its chromotoxic effects and antioxidant behavior in roots of Chrysanthemum morifolium Ramat.-Plant Sci. 166: 215–220, 2004.

    CAS  Google Scholar 

  • Khan, N.A.: NaCl-inhibited chlorophyll synthesis and associated changes in ethylene evolution and antioxidative enzyme activities in wheat.-Biol. Plant. 47: 437–440, 2003.

    CAS  Google Scholar 

  • Latha, R., Rao, C.S., Subramaniam, H.M.S., Eganathan, P., Swaminathan, M.S.: Approaches to breeding for salinity tolerance-a case study on Porteresia coarctata.-Ann. appl. Biol. 144: 177–184, 2004.

    Google Scholar 

  • Lorenzo, H., Cid, M.C., Silvério, J.M., Ruano, M.C.: Effects of sodium on mineral nutrition in rose plants.-Ann. appl. Biol. 137: 65–72, 2000.

    CAS  Google Scholar 

  • Marler, T.E., Zozor, Y.: Salinity influences photosynthetic characteristics, water relations, and foliar mineral composition of Annona squamosa L.-J. amer. Soc. hort. Sci. 121: 243–248, 1996.

    Google Scholar 

  • Medici, L.O., Azevedo, R.A., Smith, R.J., Lea, P.J. The influence of nitrogen supply on antioxidant enzymes in plant roots.-Funct. Plant Biol. 31: 1–9, 2004.

    CAS  Google Scholar 

  • Munns, R.: Comparative physiology of salt and water stress.-Plant Cell Environ. 25: 241–252, 2002.

    Google Scholar 

  • Munns, R., Termaat, A.: Whole-plant responses to salinity.-Aust. J. Plant. Physiol. 13: 143–160, 1986.

    Article  Google Scholar 

  • Panda, S.K., Upadhyay, R.K.: Salt stress injury induces oxidative alterations and antioxidative defence in the roots of Lemna minor.-Biol. Plant. 48: 249–253, 2004.

    CAS  Google Scholar 

  • Qasim, M., Ashraf, M., Ashraf, M.Y., Rehman, S.U., Rha, E.S.: Salt-induced changes in two canola cultivars differing in salt tolerance.-Biol. Plant. 46: 629–632, 2003.

    Google Scholar 

  • Ramoliya, P.J., Patel, H.M., Pandey, A.N.: Effect of salinisation of soil on growth and macro-and micro-nutrient accumulation in seedlings of Acacia catechu (Mimosaceae).-Ann. appl. Biol. 144: 321–332, 2004.

    CAS  Google Scholar 

  • Sairam, R.K., Singh, D.V., Srivastava, G.C.: Changes in activities of antioxidant enzymes in sunflower leaves of different ages.-Biol. Plant. 47: 61–66, 2003.

    CAS  Google Scholar 

  • Sam, O., Ramírez, C., Coronado, M.J., Testillano, P.S., Risueno, M.C.: Changes in tomato leaves induced by NaCl stress: leaf organization and cell ultrastructure.-Biol. Plant. 47: 361–366, 2003.

    Google Scholar 

  • Serrano, R.: Salt tolerance in plants and microorganisms: toxicity targets and defense responses.-Int. Rev. Cytol. 165: 1–52, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Smýkalová, I., Zámećníková, B.: The relationship between salinity and cadmium stress in barley.-Biol. Plant. 46: 269–273, 2003.

    Google Scholar 

  • Soares, A.C.D., Costa, J.T.A., Crisostomo, L.A., Melo, F.I.O.: Germinação de sementes e desenvolvimento de plântulas de cajueiro anão precoce submetidas a estresse salino.-Rev. Bras. Frutic. 22: 458–462, 2001. [In Port.]

    Google Scholar 

  • Sousa, M.F., Campos, F.A.P., Prisco, J.T., Enéas-Filho, J., Gomes-Filho, E.: Growth and protein pattern in cowpea seedlings subjected to salinity.-Biol. Plant. 47: 341–346. 2003.

    Google Scholar 

  • Storey, R., Walker, R.R.: Citrus and salinity.-Sci. Hort. 78: 39–81, 1999.

    CAS  Google Scholar 

  • Stoynova-Bakalova, E., Toncheva-Panova, T.: Subcellular adaptation to salinity and irradiance in Dunaliella salina.-Biol. Plant. 47: 233–236, 2003.

    Google Scholar 

  • Viégas, R.A., Fausto, M.J.M., Queiroz, J.E., Rocha, I.M.A., Silveira J.A.G., Viégas, P.R.A.: Growth and total-N content of Prosopis juliflora (SW) D. C. are stimulated by low NaCl levels.-Braz. J. Plant Physiol. 16: 65–68, 2004.

    Google Scholar 

  • Vitória, A.P., Lea, P.J., Azevedo, R.A.: Antioxidant enzymes responses to cadmium in radish tissues.-Phytochemistry 57: 701–710, 2001.

    PubMed  Google Scholar 

  • Vitória, A.P., Rodriguez, A.P.M., Cunha, M., Lea, P.J., Azevedo, R.A.: Structural changes in radish seedlings exposed to cadmium.-Biol. Plant. 47: 561–568, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Passos, V.M., Santana, N.O., Gama, F.C. et al. Growth and ion uptake in Annona muricata and A. squamosa subjected to salt stress. Biol Plant 49, 285–288 (2005). https://doi.org/10.1007/s10535-005-5288-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-005-5288-4

Additional key words

Navigation