Biologia Plantarum

, 49:85 | Cite as

Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes

  • R. K. Sairam
  • G. C. Srivastava
  • S. Agarwal
  • R. C. Meena
Article

Abstract

Effects of long-term sodium chloride salinity (100 and 200 mM NaCl; ECe = 6.85 and 12.3 dS m−1) were studied in tolerant (Kharchia 65, KRL 19) and susceptible (HD 2009, HD 2687) wheat genotypes. NaCl decreased relative water content (RWC), chlorophyll content (Chl), membrane stability index (MSI) and ascorbic acid (AA) content, and increased the contents of hydrogen peroxide, thiobarbituric acid reactive substances (TBARS), and activities of superoxide dismutase (SOD), ascorbate peroxidase (APOX) and glutathione reductase (GR). Kharchia 65 showed lowest decline in RWC, Chl, MSI and AA content, lowest increase in H2O2 and TBARS contents and higher increase in SOD and its isozymes, APOX and GR, while HD2687 showed the highest decrease in AA content, highest increase in H2O2 and TBARS contents and smallest increase in activities of antioxidant enzymes. KRL 19 and HD 2009 showed intermediate response both in terms of oxidative stress and antioxidant activity.

Additional key words

ascorbate peroxidase ascorbic acid chlorophyll glutathione reductase lipid peroxidation superoxide dismutase Triticum aestivum 

Abbreviations

AA

ascorbic acid

APOX

ascorbate peroxidase

Chl

chlorophyll

GR

glutathione reductase

MSI

membrane stability index

ROS

reactive oxygen species

RWC

relative water content

SOD

superoxide dismutase

TBARS

thiobarbituric acid reactive substances

References

  1. Anderson, M.D., Prasad, T.K., Stewart, C.R.: Changes in isozyme profiles of catalase, peroxidase and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings.-Plant Physiol. 109: 1247–1257, 1995.PubMedGoogle Scholar
  2. Arnon, D.I.: Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris.-Plant Physiol. 24: 1–15, 1949.PubMedCrossRefGoogle Scholar
  3. Asada, K.: Ascorbate peroxidase — a hydrogen peroxide scavenging enzyme in plants.-Physiol. Plant. 55: 235–241, 1992.CrossRefGoogle Scholar
  4. Asada, K.: Production and action of active oxygen in photosynthetic tissues.-In: Foyer, C.H., Mullineaux, P.M. (ed.): Causes of Photooxidative Stress in Plants and Amelioration of Defence System. Pp. 77–109. CRC Press, Boca Raton 1994.Google Scholar
  5. Asada, K., Takahashi, M.: Production and scavenging of active oxygen in photosynthesis.-In: Kyde, D.J., Osmond, C.B., Arntun, C.J. (ed.): Photoinhibition. Pp. 227–287. Elsevier Science, Amsterdam 1987.Google Scholar
  6. Bhattacharjee, S., Mukherjee, A.K.: Ethylene evolution and membrane lipid peroxidation as indicators of salt injury in leaf tissues of Amaranthus lividus seedlings.-Indian J. exp. Biol. 34: 279–281, 1996.Google Scholar
  7. Comba, M.E., Benavides, M.P., Tomaro, M.L.: Effect of salt stress on antioxidant defence system in soybean root nodules.-Aust. J. Plant Physiol. 25: 665–671, 1998.CrossRefGoogle Scholar
  8. Del Rio, L.A., Sevilla, F., Sandalio, L.M., Palma, J.M.L.: Nutritional effects and expression of superoxide dismutase: induction and gene expression, diagnostics, prospective protection against oxygen toxicity.-Free Radical Res. Commun. 12-13: 819–828., 1991.CrossRefGoogle Scholar
  9. Dhindsa, R.A., Plumb-Dhindsa, P., Thorpe, T.A.: Leaf senescence: Correlated with increased permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase.-J. exp. Bot. 126: 93–101, 1981.CrossRefGoogle Scholar
  10. Dionisio-Sese, M.L., Tobita, S.: Antioxidant responses of rice seedlings to salinity stress.-Plant Sci. 135: 1–9, 1998.CrossRefGoogle Scholar
  11. Elstner, E.F.: Mechanism of oxygen activation in different compartments of plant cell.-In: Pell, E.J., Steffen, K.L. (ed.): Active Oxygen/Oxidative Stress and Plant Metabolism. Pp. 13–25. Amer. Soc. Plant Physiol., Rockville 1991.Google Scholar
  12. Fadzilla, N.M., Robert, P., Finch, R.P., Burdon, R.H.: Salinity, oxidative stress and antioxidant response in shoot cultures of rice.-J. exp. Bot. 48: 325–331, 1997.CrossRefGoogle Scholar
  13. Fahmy, A.S., Mohamed, T.M., Mohamed, S.A., Saker, M.M.: Effect of salt stress on antioxidant activities in cell suspension cultures of cantaloupe (Cucumis melo).-Egyptian J. Physiol. Sci. 22: 315–326, 1998.Google Scholar
  14. Fridovich, I.: Biological effects of superoxide radical.-Arch. Biochem. Biophys. 247: 1–11, 1986.CrossRefPubMedGoogle Scholar
  15. Gadallah, M.A.A.: Effect of proline and glycine-betaine on Vicia faba responses to salt stress.-Biol. Plant. 42: 247–249, 1999.CrossRefGoogle Scholar
  16. Gomez, J.M., Hernandez, J.A., Jimenez, A., Del Rio, L.A., Sevilla, F.: Differential response of antioxidative enzymes of chloroplasts and mitochondria to long-term NaCl stress of pea plant.-Free Radical Res. 31(Suppl.): 11–18, 1999.CrossRefGoogle Scholar
  17. Gueta-Dahan, Y., Yaniv, Z., Zilinkas, B.A., Ben-Hayyim, G.: Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in citrus.-Planta 203: 460–469, 1997.CrossRefPubMedGoogle Scholar
  18. Heath, R.L., Packer, L.: Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation.-Arch. Biochem. Biophys. 125: 189–198, 1968.CrossRefPubMedGoogle Scholar
  19. Hernandez, J.A., Campillo, A., Jimenez, A., Alarcon, J.J., Sevilla, F.: Response of antioxidant systems and leaf water relations to NaCl stress in pea.-New Phytol. 141: 241–251, 1999.CrossRefGoogle Scholar
  20. Hernandez, J.A., Corpas, F.J., Gomez, M., Del Rio, L.A., Sevilla, F.: Salt induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria.-Physiol. Plant. 89: 103–110, 1993.CrossRefGoogle Scholar
  21. Hernandez, J.A., Del Rio, L.A., Sevilla, F.: Salt stress induced changes in superoxide dismutase isozyme in leaves and mesophyll protoplast from Vigna unguiculata (L) Walp.-New Phytol. 126: 37–44, 1994.CrossRefGoogle Scholar
  22. Hernandez, J.A., Jimenez, A., Mullineaux, P., Sevilla, F.: Tolerance of pea (Pisum sativum L.) to long term salt stress is associated with induction of antioxidant defences.-Plant Cell Environ. 23: 853–862, 2000.CrossRefGoogle Scholar
  23. Hernandez, J.A., Olmos, E., Corpas, F.J., Sevilla, F., Del Rio, L.A.: Salt induced oxidative stress in chloroplast of pea plants.-Plant Sci. 105: 151–167, 1995.CrossRefGoogle Scholar
  24. Hess, J.L.: Vitamin E, α-tocopherol.-In: Alscher, R.G., Hess, J.L. (ed.): Antioxidants in Higher Plants. Pp. 111–134. CRC Press, Boca Raton 1993.Google Scholar
  25. Hiscox, J.D., Israelstam, G.F.: A method for extraction of chloroplast from leaf tissue without maceration.-Can. J. Bot. 57: 1332–1334, 1979.CrossRefGoogle Scholar
  26. Kunert, K.J., Ederer, M.: Leaf aging and lipid peroxidation: The role of the antioxidants vitamin C and E.-Physiol Plant. 88: 557–562, 1985.Google Scholar
  27. Mukherjee, S.P., Choudhuri, M.A.: Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings.-Physiol. Plant. 58: 166–170, 1983.CrossRefGoogle Scholar
  28. Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts.-Plant Cell Physiol. 22: 867–880, 1981.Google Scholar
  29. Rich, P.R., Bonner, W.D., Jr.: The sites of superoxide anion generation in higher plant mitochondria.-Arch. Biochem. Biophys. 188: 206–213, 1978.CrossRefPubMedGoogle Scholar
  30. Sairam, R.K., Deshmukh, P.S., Saxena, D.C.: Role of antioxidant system in wheat genotypes tolerance to water stress.-Biol. Plant. 41: 387–394, 1998.CrossRefGoogle Scholar
  31. Sairam, R.K., Deshmukh, P.S., Shukla, D.S.: Tolerance to drought and temperature stress in relation to increased antioxidant enzyme activity in wheat.-J. Agron. Crop Sci. 178: 171–177, 1997.CrossRefGoogle Scholar
  32. Salama, S., Trivedi, S., Busheva, M., Arafa, A.A., Garab, G., Eredei, L.: Effect of NaCl salinity on growth, cation accumulation, chloroplast structure and function in wheat cultivars differing in salt tolerance.-J. Plant Physiol. 144: 241–247, 1994.Google Scholar
  33. Salin, M.L.: Toxic oxygen species and protective system of the chloroplasts.-Physiol. Plant. 72: 681–689, 1988.CrossRefGoogle Scholar
  34. Salin, M.L.: Chloroplast and mitochondrial mechanism for protection against oxygen toxicity.-Free Radical Res. Commun. 12-13: 851–858, 1991.CrossRefGoogle Scholar
  35. Sehmer, l., Alaoui-Sasse, B., Dizangremel, P.: Effect of salt stress on growth and on the detoxifying pathway of pedunculate oak seedlings (Quercus robur L.).-J. Plant Physiol. 147: 144–151, 1995.Google Scholar
  36. Smith, I.K., Vierheller, T.L., Thorne, C.A.: Assay of glutathione reductase in crude tissue homogenates using 5,5′-dithiobis (2-nitrobenzoic acid).-Anal. Biochem. 175: 408–413, 1988.CrossRefPubMedGoogle Scholar
  37. Sreenivasasulu, N., Grinm, B., Wobus, U., Weschke, W.: Differential response of antioxidant compounds to salinity stress in salt tolerant and salt sensitive seedlings of foxtail millet (Setaria italica).-Physiol. Plant. 109: 435–442, 2000.CrossRefGoogle Scholar
  38. Srivastava, T.P., Gupta, S.C., Lal, P., Muralia, P.N., Kumar, A.: Effect of salt stress on physiological and biochemical parameters of wheat.-Ann. arid Zone 27: 197–204, 1988.Google Scholar
  39. Wheatherley, P.E.: Studies in the water relations of cotton plants. I. The field measurement of water deficit in leaves.-New Phytol. 49: 81–87, 1950.CrossRefGoogle Scholar
  40. Ying, H.C., Chen, Y.M., Huang, C.Y.: Role of glutathione reductase and related enzymes in salt tolerance mechanism of soybean plants grown under salt stress condition.-Taiwania 44: 21–34, 1995.Google Scholar
  41. Yu, Q., Rengel. Z.: Drought and salinity differentially influence activities of superoxide dismutase in narrow-leafed lupins.-Plant Sci. 142: 1–11, 1999.CrossRefGoogle Scholar

Copyright information

© Institute of Experimental Botany 2005

Authors and Affiliations

  • R. K. Sairam
    • 1
  • G. C. Srivastava
    • 1
  • S. Agarwal
    • 1
  • R. C. Meena
    • 1
  1. 1.Division of Plant PhysiologyIndian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations