Biologia Plantarum

, Volume 49, Issue 1, pp 23–28

Microspore development during in vitro androgenesis in triticale

Article

Abstract

Microspore division was monitored in three triticale (× Triticosecale Wittmack) genotypes over 21 d of in vitro anther culture, on two media differing in their 2,4-dichlorophenoxyacetic acid content. After low temperature (4 °C) pre-treatment for two weeks, all the microspores were still alive, but they began to die from day one of culture. Both genotype and culture medium affected the number of microspores that aborted over time (82 – 97 % by day 21), the number of microspores that underwent the first symmetrical division (> 82 % over all), the number of microspores that attained four or more nuclei, and the number of divisions per 100 alive microspores after 21 d of culture.

Additional key words

anther culture 4-D haploid low temperature × Triticosecale 

Abbreviations

2,4-D

2,4-dichlorophenoxyacetic acid

DH

double haploid

ELS

embryo-like structures

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonet, F.J., Olmedilla, A.: Structural changes during early embryogenesis in wheat pollen.-Protoplasma 211: 94–102, 2000.CrossRefGoogle Scholar
  2. Čalić, D., Zdravković-Korać, S., Jevremović, S., Guć-Šć ekić, M., Radojević, Lj.: Efficient haploid induction in microspore suspension culture of Aesculus hippocastanum and karyotype analysis.-Biol. Plant. 47: 289–292, 2003/4.Google Scholar
  3. Charmet, G., Bernard, S.: Diallel analysis of androgenetic plant production in hexaploid triticale (× Triticosecale, Wittmack).-Theor. appl. Genet. 69: 55–61, 1984.CrossRefGoogle Scholar
  4. Chu, C.C.: The N6 medium and its applications to anther culture of cereal crops.-In: Proceedings of Symposium on Plant Tissue Culture. Pp. 43–50. Science Press, Beijing 1978.Google Scholar
  5. Cistué, L., Ramos, A., Castillo, A.M., Romagosa, I.: Production of large number of doubled haploid plants from barley anther pretreated with high concentration of mannitol.-Plant Cell Rep. 13: 709–712, 1994.CrossRefGoogle Scholar
  6. Deimling, S., Flehinghaus-Roux, T.: Haploidy in rye.-In: Mohan Jain, S., Sopory, S.K., Veilleux, R.E (ed.): In Vitro Haploid Production in Higher Plants. Vol. 4. Pp. 181–204. Kluwer Academic Publishers, Dordrecht 1997.Google Scholar
  7. González, J.M., Hernández, I., Jouve, N.: Analysis of anther culture response in hexaploid triticale.-Plant Breed. 116: 302–304, 1997.CrossRefGoogle Scholar
  8. González, J.M., Jouve, N.: Improvement of anther culture media for haploid production in triticale.-Cereal Res. Commun. 28: 65–72, 2000.Google Scholar
  9. Hassawi, D.S., Sears, R.G., Liang, G.H.: Microspore development in the anther culture of wheat (Triticum aestivum L.).-Cytologia (Tokyo) 55: 475–478, 1990.Google Scholar
  10. Hause, B., Hause, G., Pechan, P., Van Lammeren, A.A.M.: Cytoskeletal changes and induction of embryogenesis in microspore and pollen cultures of Brassica napaus L.-Cell Biol. int. 17: 153–168, 1993.CrossRefGoogle Scholar
  11. Henry, Y., De Buyser, J.: Effect of the 1B/1R translocation on anther culture ability in wheat (Triticum aestivum L.).-Plant Cell Rep. 4: 307–310, 1985.CrossRefGoogle Scholar
  12. Hu, T., Kasha, K.J.: Improvement of isolated microspore culture of wheat (Triticum aestivum L.) through ovary co-culture.-Plant Cell Rep. 16: 520–525, 1997.CrossRefGoogle Scholar
  13. Immonen, S., Anttila, H.: Media composition and anther plating for production of androgenetic green plants from cultivated rye (Secale cereale L.).-J. Plant Physiol. 156: 204–210, 2000.Google Scholar
  14. Indrianto, A., Barinova, I., Touraev, A., Harberle-Bors, E.: Tracking individual wheat microspores in vitro: identificacion of embryogenic microspores and body axis formation in the embryo.-Planta 212: 163–174, 2001.CrossRefPubMedGoogle Scholar
  15. Jähne, A., Lörz, H.: Cereal microspore culture.-Plant Sci. 109: 1–12, 1995.CrossRefGoogle Scholar
  16. Kasha, K.J., Ziauddin, A., Cho, U.H.: Haploids in cereal improvement: anther and microspore culture.-In: Gustafson, P.J. (ed.): Gene Manipulation in Plant Improvement II. Pp. 213–236. Plenum Press, New York 1990.Google Scholar
  17. Knudsen, S., Due, I.K., Andersen, S.B.: Components of response in barley anther culture.-Plant Breed. 103: 241–246, 1989.CrossRefGoogle Scholar
  18. Pechan, P., Bartels, D., Brown, D., Schell, J.: Messenger RNA and protein changes associated with induction of Brassica microspore embryogenesis.-Planta 184: 161–165, 1991.CrossRefGoogle Scholar
  19. Pelletier, G.: Use of haplo-diploidisation for plant breeding.-In: Chupeau, Y., Caboche, M., Henry Y. (ed.): Androgenesis and Haploid Plants. Pp. 104–111. Springer-Verlag, Berlin 1998.Google Scholar
  20. Pickering, R.A., Devaux, P.: Haploid production: approaches and use in plant breeding.-In: Shewry, P.R. (ed.): Barley: Genetics, Biochemistry, Molecular Biology and Biotechnology. Pp. 519–547. CAB International, Oxford 1992.Google Scholar
  21. Puolimatka, M., Paul, J.: Effect of induction duration and medium composition on plant regeneration in wheat (Triticum aestivum L.) anther culture.-J. Plant Physiol. 156: 197–203, 2000.Google Scholar
  22. Říhová, L., Tupý, J.: Manipulation of division symmetry and developmental fate in cultures of potato microspores.-Plant Cell Tissue Organ Cult. 59: 135–145, 1999.CrossRefGoogle Scholar
  23. Roberts-Oëheschlager, S.L., Dunwell, J.M.: Barley anther culture: pretreatment on mannitol stimulates production of microspore-derived embryos.-Plant Cell Tissue Organ Cult. 20: 235–240, 1990.Google Scholar
  24. Shim, Y.S., Kasha, K.: The influence of pretreatment on cell stage progression and the time of DNA synthesis in barley (Hordeum vulgare L.) uninucleate microspores.-Plant Cell Rep. 21: 1065–1071, 2003.CrossRefPubMedGoogle Scholar
  25. Smýkal, P.: Pollen embryogenesis-the stress mediated switch from gametophytic to sporophytic development.-Current status and future prospects.-Biol. Plant. 43: 481–489, 2000.CrossRefGoogle Scholar
  26. Smýkal, P., Pechan, P.M.: Stress, as assessed by the appearance of sHsp transcripts, is required but not sufficient to initiate androgenesis.-Physiol. Plant. 110: 135–143, 2000.CrossRefGoogle Scholar
  27. Szakács, E., Barnabás, B.: The effect of colchicine treatment on microspore division and microspore-derived embryo differentiation in wheat (Triticum aestivum L.) anther culture.-Euphytica 83: 209–213, 1995.CrossRefGoogle Scholar
  28. Touraev, A., Indrianto, A., Wratschko, I., Vicente, O., Heberle-Bors, E.: Efficient microspore embryogenesis in wheat (Triticum aestivum L.) induced by starvation at high temperature.-Sex. Plant Reprod. 9: 209–215, 1996.CrossRefGoogle Scholar
  29. Tuvesson, S., Ljungberg, A., Johansson, N., Karlsson, K.E., Suijs, L.W., Josset, J.P.: Large-scale production of wheat and triticale double haploids through the use of a single anther culture method.-Plant Breed. 119: 455–459, 2000.CrossRefGoogle Scholar
  30. Wojnarowiez, G., Jacquard, C., Devaux, P., Sangwan, R.S., Clément, C.: Influence of copper sulfate on anther culture in barley (Hordeum vulgare L.).-Plant Sci. 162: 843–847, 2002.CrossRefGoogle Scholar
  31. Zaki, M.A.M., Dickinson, H.G.: Microspore-derived embryos in Brassica: the significance of division symmetry in pollen mitosis I to embryogenic development.-Sex. Plant Reprod. 4: 48–55, 1991.CrossRefGoogle Scholar
  32. Zheng, J., Ouyang, J.: The early androgenesis in in vitro wheat anthers under ordinary and low temperature.-Acta genet. sin. 7: 165–175, 1980.Google Scholar
  33. Zhou, H., Konzak, C.F.: Improvement of anther culture methods for haploid production in wheat.-Crop Sci. 29: 817–821, 1989.CrossRefGoogle Scholar

Copyright information

© Institute of Experimental Botany 2005

Authors and Affiliations

  1. 1.Departamento de Biología Celular y Genética, Facultad de BiologíaUniversidad de Alcalá, Campus UniversitarioAlcalá de Henares (Madrid)Spain

Personalised recommendations