Biologia Plantarum

, Volume 50, Issue 1, pp 131–134 | Cite as

Production of human lactoferrin in transgenic cell suspension cultures of sweet potato

  • S. R. Min
  • J. W. Woo
  • W. J. Jeong
  • S. K. Han
  • Y. B. Lee
  • J. R. Liu
Brief Communication

Abstract

Shoot apical meristem-derived calli were transformed with a hLF cDNA in an attempt to produce human lactoferrin (hLF) in transgenic cell suspension cultures of sweet potato [Ipomoea batatas (L.) Lam.]. Calli were bombarded with tungsten particles coated with the binary vector pLSM1 containing a hLF cDNA under the control of the 35S promoter and the neomycin phosphotransferase gene as a selection marker. Calli were then transferred to Murashige and Skoog (MS) medium supplemented with 4.52 µM 2,4-dichlorophenoxyacetic acid (2,4-D) and 100 mg dm−3 kanamycin. Kanamycin-resistant calli were selected at four-week intervals and subcultured. Cell suspension cultures were established in liquid MS medium with 4.52 µM 2,4-D. Southern and Northern blot analyses confirmed that hLF cDNA was incorporated into the plant genome and was properly expressed in the cells. ELISA analysis showed that transgenic cells produced hLF up to 3.2 µg mg−1 (total protein).

Additional key words

genetic transformation Ipomoea batatas particle bombardment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arakawa, T., Chong, D.K.X., Slattery, C.W., Langridge, W.H.R.: Improvements in human health through production of human milk proteins in transgenic food plants.-In: Shahidi, F., Kolodziejczyk, P., Whitaker, J.R., Munguia, A.L., Fuller, G. (ed.): Chemicals via Higher Plant Bioengineering. Pp. 149–159. Kluwer Academic Publishers and Plenum Press, New York 1999.Google Scholar
  2. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.-Anal. Biochem. 72: 248–254, 1976.CrossRefPubMedGoogle Scholar
  3. Chong, D.K.X., Langridge, W.H.R.: Expression of full-length bioactive antimicrobial human lactoferrin in potato plants.-Transgenic Res. 9: 71–78, 2000.CrossRefPubMedGoogle Scholar
  4. Doran, P.M.: Foreign protein production in plant tissue cultures.-Curr. Opinion Biotechnol. 11: 199–204, 2000.CrossRefGoogle Scholar
  5. Humphrey, B.D., Huang, N., Klasing, K.C.: Rice expressing lactoferrin and lysozyme has antibiotic-like properties when fed to chicks.-J. Nutr. 132: 1214–1218, 2002.PubMedGoogle Scholar
  6. Lee, T.J., Coyne, D.P., Clemente, T.E., Mitra, A.: Partial resistance to bacterial wilt in transgenic tomato plants expressing antibacterial lactoferrin gene.-J. amer. Soc. hort. Sci. 127: 158–164, 2002.Google Scholar
  7. Liang, Q., Richardson, T.: Expression and characterization of human lactoferrin in yeast Saccharomyces cerevisiae.-J. agr. Food Chem. 41: 1800–1807, 1993.CrossRefGoogle Scholar
  8. Liu, J.R., Cantliffe, D.J., Simonds, S.C., Yuan, J.F.: High frequency somatic embryogenesis from cultured shoot apical meristem domes of sweet potato (Ipomoea batatas).-SABRAO J. 21: 93–101, 1989.Google Scholar
  9. Liu, J.R., Lee, K.K., Yu, D.Y., Lee, M.H.: Process for the preparation of antiviral plant transformed with lactoferrin gene.-US Patent 5: 914–448, 1999.Google Scholar
  10. Min, S.R., Liu, J.R., Rho, T.H., Kim, C.H., Ju, J.I.: High frequency somatic embryogenesis and plant regeneration in tissue cultures of Korean cultivar sweet potatoes.-Korean J. Plant Tissue Cult. 21: 157–160, 1994.Google Scholar
  11. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures.-Plant Physiol. 15: 473–497, 1962.Google Scholar
  12. Nandi, S., Suzuki, Y.A., Huang, J., Yalda, D., Pham, P., Wu, L., Bartley, G., Huang, N., Lonnerdal, B.: Expression of human lactoferrin in transgenic rice grains for the application in infant formula.-Plant Sci. 163: 713–722, 2002.CrossRefGoogle Scholar
  13. Salmon, V., Legrand, D., Slomianny, M.C., El Yazidi, I., Spik, G., Gruber, V., Bournat, P., Olagnier, B., Mison, D., Theisen, M., Merot, B.: Production of human lactoferrin in transgenic tobacco plants.-Protein Exp. Purification 13: 127–35, 1998.Google Scholar
  14. Van Berkel, P.H.C., Welling, M.M., Geerts, M., Van Veen., H.A., Ravensbergen, B., Salaheddine, M., Pauwels, E.K.J., Pieper, F., Nuijens, J.H., Nibbering, P.H.: Large scale production of recombinant human lactoferrin in the milk of transgenic cows.-Natur. Biotechnol. 20: 484–487, 2002.Google Scholar
  15. Vaucheret, H., Beclin, C., Elmayan, T., Feuerbach, F., Godon, C., Morel, J.B., Mourrain, P., Palauqui, J.C., Vernhettes, S.: Transgene-induced gene silencing in plants.-Plant J. 16: 651–660, 1998.CrossRefPubMedGoogle Scholar
  16. Zhang, Z., Coyne, D.P., Vidaver, A.K., Mitra, A.: Expression of human lactoferrin cDNA confers resistance to Ralstonia solanacearum in transgenic tobacco plants.-Phytopathology 88: 730–734, 1998.Google Scholar

Copyright information

© Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Praha 2006

Authors and Affiliations

  • S. R. Min
    • 1
  • J. W. Woo
    • 1
  • W. J. Jeong
    • 1
  • S. K. Han
    • 1
  • Y. B. Lee
    • 2
  • J. R. Liu
    • 1
  1. 1.Laboratory of Plant Cell BiotechnologyKorea Research Institute of Bioscience and Biotechnology (KRIBB)Yuseong-gu, DaejeonKorea
  2. 2.Department of HorticultureChungnam National UniversityYuseong-guKorea

Personalised recommendations