Biologia Plantarum

, Volume 49, Issue 4, pp 567–576 | Cite as

Cannabis sativa L. growing on heavy metal contaminated soil: growth, cadmium uptake and photosynthesis

Article

Abstract

The effects of different cadmium concentrations [17 mg(Cd) kg−1(soil) and 72 mg(Cd) kg− 1(soil)] on Cannabis sativa L. growth and photosynthesis were examined. Hemp roots showed a high tolerance to Cd, i.e. more than 800 mg(Cd) kg−1(d.m.) in roots had no major effect on hemp growth, whereas in leaves and stems concentrations of 50 – 100 mg(Cd) kg−1(d.m.) had a strong effect on plant viability and vitality. For control of heavy metal uptake and xylem loading in hemp roots, the soil pH plays a central role. Photosynthetic performance and regulation of light energy consumption were analysed using chlorophyll fluorescence analysis. Seasonal changes in photosynthetic performance were visible in control plants and plants growing on soil with 17 mg(Cd) kg−1(soil). Energy distribution in photosystem 2 is regulated in low and high energy phases that allow optimal use of light and protect photosystem 2 from overexcitation, respectively. Photosynthesis and energy dissipation were negatively influenced by 72 mg(Cd) kg−1(soil). Cd had detrimental effects on chlorophyll synthesis, water splitting apparatus, reaction centre, antenna and energy distribution of PS 2. Under moderate cadmium concentrations, i.e. 17 mg(Cd) kg−1(soil), hemp could preserve growth as well as the photosynthesis apparatus, and long-term acclimation to chronically Cd stress occurred.

Additional key words

acclimation chlorophyll fluorescence phytoextraction quenching tolerance 

Abbreviations

AAS

atomic absorption spectroscopy

Cd1, Cd2

cadmium concentration 1, 2

d.m.

dry mass

ET

electron transport

f.m.

fresh mass

PPFD

photosynthetic photon flux density

PS 2

photosystem 2

ΔpH

proton gradient

ΦPS2

quantum efficiency of photosystem 2

qP

photochemical quenching

qN

non-photochemical quenching

qE

energy dependent quenching

qT

quenching related to state transition

qI

photoinhibitory quenching

qF

fast-relaxing non-photochemical quenching

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adriano, D.C.: Trace Elements in the Terrestrial Environment.-Springer, Berlin 1986.Google Scholar
  2. Allaway, W.H.: The environmental cycling of trace elements.-Adv. Agron. 20: 235–274, 1968.Google Scholar
  3. Arnon, D.I.: Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris.-Plant Physiol. 24: 1–15, 1949.Google Scholar
  4. Axelsen, B.A., Palmgren, M.G.: Inventory of the superfamily of P-type ion pumps in Arabidopsis.-Plant Physiol. 126: 696–706, 2001.CrossRefPubMedGoogle Scholar
  5. Bansal, P., Sharma, P., Goyal, V.: Impact of lead and cadmium on enzyme of citric acid cycle in germinating pea seeds.-Biol. Plant. 45: 125–127, 2002.CrossRefGoogle Scholar
  6. Baryla, A., Carrier, P., Franck, F., Coulomb, C., Sahut, C., Havaux, M.: Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: causes and consequences for photosynthesis and growth.-Planta 212: 696–709, 2001.CrossRefPubMedGoogle Scholar
  7. Baszynski, T., Wajda, L., Krol, M., Wolinska, D., Krupa, Z., Tukendorf, A.: Photosynthetic activities of cadmium-treated tomato plants.-Physiol. Plant. 48: 365–370, 1980.Google Scholar
  8. Bjorkman, O., Demmig, B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants diverse origins.-Planta 170: 489–504, 1987.CrossRefGoogle Scholar
  9. Boddi, B., Oravecz, A.R., Lehoczki, E.: Effect of cadmium on organization and photoreduction of protochlorophyllide in dark-grown leaves and etioplast inner membrane preparations of wheat.-Photosynthetica 31: 411–420, 1995.Google Scholar
  10. Bolhar-Nordenkampf, H.R., Long, S.P., Lechner, E.G.: Die Bestimmung der Photosynthesekapazitatuber die Chlorophyllfluoreszenz als Maß fur die Streßbelastung von Baumen.-Phyton 29: 119–135, 1989.Google Scholar
  11. Chugh, L.K., Sawhney, S.K.: Photosynthetic activities of Pisum sativum seedlings grown in presence of cadmium.-Plant Physiol. Biochem. 37: 297–303, 1999.CrossRefGoogle Scholar
  12. Chronopoulos, J., Haidouti, C., Chronopoulou-Sereli, A., Massas, I.: Variations in plant and soil lead and cadmium content in urban parks in Athens, Greece.-Sci. total Environ. 196: 91–98, 1997.CrossRefGoogle Scholar
  13. Dahmani-Muller, H., Van Oort, F., Balabane, M.: Strategies of heavy metal uptake by three plant species growing near a metal smelter.-Environ. Pollut. 109: 231–238, 2000.CrossRefPubMedGoogle Scholar
  14. Dietz, K.-J., Baier, M., Kramer, U.: Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants.-In: Prasad, M.N.V., Hagemeyer, J. (ed.): Heavy Metal Stress in Plants. Pp. 73–98. Springer, Heidelberg 1999.Google Scholar
  15. Dubey, R.S.: Photosynthesis in plants under stressful conditions.-In: Pessarakli, M. (ed.): Handbook of Photosynthesis. Pp. 859–876. Marcel Dekker, New York 1997.Google Scholar
  16. El-Shintinawy, F.: Glutathione counteracts the inhibitory effect induced by cadmium on photosynthetic process in soybean.-Photosynthetica 36: 171–179, 1999.CrossRefGoogle Scholar
  17. Ernst, W.: Physiological and biochemical aspects of metal tolerance.-In: Mansfield, T.A. (ed.): Effects of Air Pollutants on Plants. Pp. 115–133. Cambridge University Press, Cambridge 1976.Google Scholar
  18. Ernst, W.H.O.: Bioavailability of heavy metals and decontamination of soils by plants.-Appl. Geochem. 11: 163–167, 1996.CrossRefGoogle Scholar
  19. Felix, H.: Field trials for in situ decontamination of heavy metal polluted soils using crops of metal-accumulating plants.-Z. Pflanzenernahr. Bodenk. 160: 525–529, 1997.Google Scholar
  20. Foy, C.D., Chaney, R.L., White, M.C.: The physiology of metal toxicity in plants.-Ann. Rev. Plant Physiol. 29: 511–566, 1978.CrossRefGoogle Scholar
  21. Genty, B., Briantais, J.-M., Baker, N.R.: The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.-Biochim. biophys. Acta 990: 87–92, 1989.Google Scholar
  22. Greer, D.H., Ottander, C., Oquist, G.: Photoinhibition and recovery of photosynthesis in intact barley leaves at 5 °C and 20 °C.-Physiol. Plant. 81: 203–210, 1991.CrossRefGoogle Scholar
  23. Greger, M.: Metal availability and bioconcentration in plants.-In: Prasad, M.N.V., Hagemeyer, J. (ed.): Heavy Metal Stress in Plants. Pp. 1–28. Springer, Heidelberg 1999.Google Scholar
  24. Heber, U., Bukhov, N.G., Shuvalov, V.A., Kobayashi, Y., Lange, O.L.: Protection of the photosynthetic apparatus against damage by excessive illumination in homoiohydric leaves and poikilohydric mosses and lichens.-J. exp. Bot. 52: 1999–2006, 2001.CrossRefPubMedGoogle Scholar
  25. Hetherington, S.E., He, J., Smillie, R.M.: Photoinhibition at low temperature in chilling-sensitive and-resistant plants.-Plant Physiol. 90: 1609–1615, 1989.Google Scholar
  26. Horton, P., Ruban, A.V., Walters, R.G.: Regulation of light harvesting in green plants.-Annu. Rev. Plant Physiol. Plant mol. Biol. 47: 655–694, 1996.PubMedGoogle Scholar
  27. Horvath, G., Droppa, M., Oravecz, A., Raskin, V.I., Marder, J.B.: Formation of the photosynthetic apparatus during greening of cadmium-poisoned barley leaves.-Planta 199: 238–244, 1996.Google Scholar
  28. Jiang, W., Liu, D.: Effects of Pb2+ on root growth, cell division, and nucleolus of Zea mays L.-Bull. Environ. Contam. Toxicol. 65: 786–793, 2000.CrossRefPubMedGoogle Scholar
  29. Kevresan, S., Kirsek, S., Kandrae, J., Petrovic, N., Kelemen, Dj.: Dynamics of cadmium distribution in the intercellular space and inside cell in soybean roots, stems and leaves.-Biol. Plant. 46: 85–88, 2003.CrossRefGoogle Scholar
  30. Khudsar, T., Mahmooduzzafar, Iqbal, M., Sairam, R.K.: Zinc-induced changes in morpho-physiological and biochemical parameters in Artemisia annua.-Biol. Plant. 48: 255–260, 2004.CrossRefGoogle Scholar
  31. Krause, G.H., Weis, E.: Chlorophyll fluorescence and photosynthesis: The basics.-Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 313–349, 1991.CrossRefGoogle Scholar
  32. Krupa, Z., Baszynski, T.: Some aspects of heavy metal toxicity towards photosynthetic apparatus-direct and indirect effects on light and dark reaction.-Acta Physiol. Plant. 17: 177–190, 1995.Google Scholar
  33. Lee, K.C., Cunningham, B.A., Paulsen, G.M., Liang, G.H., Moore, R.B.: Effects of cadmium on respiration rate and activities of several enzymes in soybean seedlings.-Physiol. Plant. 36: 4–6, 1976.Google Scholar
  34. Linger, P., Bruggemann, W.: Correlations between chlorophyll fluorescence quenching parameters and photosynthesis in a segregating Lycopersicon esculentum × L. peruvianum population as measured under constant conditions.-Photosynth. Res. 61: 145–156, 1999.CrossRefGoogle Scholar
  35. Linger, P., Mussig, J., Fischer, H., Kobert, J.: Industrial hemp (Cannabis sativa L.) growing on heavy metal contaminated soil: fibre quality and phytoremediation potential.-Ind. Crops Prod. 16: 33–42, 2002.CrossRefGoogle Scholar
  36. Liu, D., Jiang, W., Gao, X.: Effects of cadmium on root growth, cell division and nucleoli in root tip cells of garlic.-Biol. Plant. 47: 79–83, 2003/4.CrossRefGoogle Scholar
  37. Losch, R., Kohl, K.I.: Plant respiration under the influence of heavy metals.-In: Prasad, M.N.V., Hagemeyer, J. (ed.): Heavy Metal Stress in Plants. Pp. 139–156. Springer, Heidelberg 1999.Google Scholar
  38. Lunackova, L., Masarovicova, E., Kral’ova, K., Stresko, V.: Responses of fast growing woody plants from family Salicaceae to cadmium treatment.-Bull. Envrion. Contam. Toxicol. 70: 576–585, 2003.CrossRefGoogle Scholar
  39. Mazen, A.M.A.: Accumulation of four metals in tissues of Corchorus olitorius and possible mechanisms of their tolerance.-Biol. Plant. 48: 267–272, 2004.CrossRefGoogle Scholar
  40. Oquist, G., Chow, W.S., Anderson, J.M.: Photoinhibition of photosynthesis represents a mechanism for long-term regulation of photosystem II.-Planta 186: 450–460, 1992.Google Scholar
  41. Oquist, G., Hurry, V.M., Huner, N.P.A.: The temperature dependence of the redox state of QA and susceptibility of photosynthesis to photoinhibition.-Plant Physiol. Biochem. 31: 683–691, 1993.Google Scholar
  42. Ouzounidou, G., Moustakas, M., Eleftheriou, E.P.: Physiological and ultrastructural effects of cadmium on wheat (Triticum aestivum L.) leaves.-Arch. Environ. Contam. Toxicol. 32: 154–160, 1997.CrossRefPubMedGoogle Scholar
  43. Prasad, M.N.V.: Cadmium toxicity and tolerance in vascular plants.-Environ. exp. Bot. 35: 525–545, 1995.CrossRefGoogle Scholar
  44. Prasad, M.N.V., Strzalka, K.: Impact of heavy metals on photosynthesis.-In: Prasad, M.N.V., Hagemeyer, J. (ed.): Heavy Metal Stress in Plants. Pp. 117–138. Springer, Heidelberg 1999.Google Scholar
  45. Rama Devi, S., Prasad, M.N.V.: Membrane lipid alterations in heavy metal exposed plants.-In: Prasad, M.N.V., Hagemeyer, J. (ed.): Heavy Metal Stress in Plants. Pp. 99–116, Springer, Heidelberg 1999.Google Scholar
  46. Robinson, B.H., Leblanc, M., Petit, D., Kirkham, K.H., Gregg, P.E.H.: The potential of Thlaspi caerulescens for phytoremediation of contaminated soils.-Plant Soil 203: 47–56, 1998.CrossRefGoogle Scholar
  47. Ruban, A.V., Horton, P.: Regulation of non-photochemical quenching of chlorophyll fluorescence in plants.-Aust. J. Plant Physiol. 22: 221–230, 1995.Google Scholar
  48. Salt, D.E., Blaylock, M., Kumar, N.P.B.A., Dushenkov, V., Ensley, B.D., Chet, I., Raskin, I.: Phytoremediation: a novel strategy for removal of toxic metals from environment using plants.-Biotechnology 13, 468–474, 1995a.CrossRefPubMedGoogle Scholar
  49. Salt, D.E., Prince, R.C., Pickering, I.J., Raskin, I.: Mechanisms of cadmium mobility and accumulation in Indian mustard.-Plant Physiol. 109: 1427–1433, 1995b.PubMedGoogle Scholar
  50. Sanita di Toppi, L., Gabbrielli, R.: Response to cadmium in higher plants.-Environ. exp. Bot. 41: 105–130, 1999.CrossRefGoogle Scholar
  51. Saxena, P.K., Krishna Raj, S., Perras, M.R., Vettakkorumakankav, N.N.: Phytoremediation of heavy metal contaminated and polluted soils.-In: Prasad, M.N.V., Hagemeyer, J. (ed.): Heavy Metal Stress in Plants. Pp. 305–329. Springer, Heidelberg 1999.Google Scholar
  52. Schreiber, U., Bilger, W.: Rapid assessment of stress effects on plant leaves by chlorophyll fluorescence measurements.-In: Tenhunen, J.D., Catarino, F.M., Lange, O.L., Oechel, W.D. (ed.): Plant Response to Stress. Pp. 27–53. Springer, Heidelberg 1987.Google Scholar
  53. Schreiber, U., Neubauer, C.: O2-dependent electron flow, membrane energization and the mechanisms of nonphotochemical quenching of chlorophyll fluorescence.-Photosynth. Res. 25: 279–293, 1990.CrossRefGoogle Scholar
  54. Schreiber, U., Schliwa, U., Bilger, W.: Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer.-Photosynth. Res. 10: 51–62, 1986.CrossRefGoogle Scholar
  55. Seregin, I.V., Ivanov, V.B.: Physiological aspects of cadmium and lead toxic effects on higher plants.-Russ. J. Plant Physiol. 48: 523–544, 2001.CrossRefGoogle Scholar
  56. Sheoran, I.S., Singal, H.R., Singh, R.: Effect of cadmium and nickel on photosynthesis and the enzymes of photosynthetic carbon reduction cycle in pigeon-pea (Cajanus cajan L.).-Photosynth. Res. 23: 345–351, 1990.CrossRefGoogle Scholar
  57. Siedlecka, A., Krupa, Z.: Cd/Fe interaction in higher plants-its consequences for the photosynthetic apparatus.-Photosynthetica 36: 321–331, 1999.CrossRefGoogle Scholar
  58. Simonovicova, M., Tamas, L., Huttova, J., Mistrik, I.: Effect of aluminium on oxidative stress related enzymes activities in barley roots.-Biol. Plant. 48: 261–266, 2004.CrossRefGoogle Scholar
  59. Stiborova, M.: Cd2+ ions affect the quaternary structure of ribulose-1,5-bisphosphate carboxylase from barley leaves.-Biochem. Physiol. Pflanz. 183: 371–378, 1988.Google Scholar
  60. Stobart, A.K., Griffiths, W.T., Ameen-Bukhari, I., Sherwood, R.P.: The effect of Cd2+ on biosynthesis of chlorophyll in leaves of barley.-Physiol. Plant. 63: 293–298, 1985.Google Scholar
  61. Walters, R.G., Horton, P.: Resolution of components of nonphotochemical chlorophyll fluorescence quenching in barley leaves.-Photosynth. Res. 27: 121–133, 1991.CrossRefGoogle Scholar
  62. Weigel, H.J.: The effect of Cd2+ on photosynthetic reactions of mesophyll protoplasts.-Physiol. Plant. 63: 192–200, 1985.Google Scholar
  63. Weis, E., Berry, J.A.: Plants and high temperature stress.-In: Longe, S.F., Woodward, F.I. (ed.): Plants and Temperature. Pp. 329–346. Company of Biologists Ltd, Cambridge 1988.Google Scholar
  64. Yang, X., Baligar, V.C., Martens, D.C., Clark, R.B.: Cadmium effects on influx and transport of mineral nutrients in plant species.-J. Plant Nutr. 19: 643–656, 1996.Google Scholar
  65. Zenk, M.H.: Heavy metal detoxification in higher plants-a review.-Gene 179: 21–30, 1996.CrossRefPubMedGoogle Scholar

Copyright information

© Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Praha 2005

Authors and Affiliations

  1. 1.Physiological Chemistry of Plants, Dept. C - Mathematics and ScienceBergische University of WuppertalWuppertalGermany
  2. 2.GeobotanyHeinrich-Heine-UniversityDusseldorfGermany

Personalised recommendations