, Volume 32, Issue 2, pp 195–210 | Cite as

Looking for a partner: ceruloplasmin in protein–protein interactions

  • Vadim B. VasilyevEmail author


Ceruloplasmin (CP) is a mammalian blood plasma ferroxidase. More than 95% of the copper found in plasma is carried by this protein, which is a member of the multicopper oxidase family. Proteins from this group are able to oxidize substrates through the transfer of four electrons to oxygen. The essential role of CP in iron metabolism in humans is particularly evident in the case of loss-of-function mutations in the CP gene resulting in a neurodegenerative syndrome known as aceruloplasminaemia. However, the functions of CP are not limited to the oxidation of ferrous iron to ferric iron, which allows loading of the ferric iron into transferrin and prevents the deleterious reactions of Fenton chemistry. In recent years, a number of novel CP functions have been reported, and many of these functions depend on the ability of CP to form stable complexes with a number of proteins.


Ceruloplasmin Protein–protein interactions Acute phase reactants Neutrophilic proteins 



The author is grateful to Dr. Alexey Sokolov (Institute of Experimental Medicine, Saint-Petersburg) and Dr. Valeria Samygina (Institute of Crystallography, Moscow) for help and fruitful consultations.


This work was supported by Grant 18-015-00241 from the Russian Foundation for Basic Research.


  1. Aaseth J, Haugen M, Forre O (1998) Rheumatoid arthritis and metal compounds—perspectives on the role of oxygen radical detoxification. Analyst 123:3–6Google Scholar
  2. Bakhautdin B, Febbraio M, Goksoy E, delaMotte CA, Gulen MF, Childers EP, Hazen SL, Li X, Fox PL (2013) Protective role of macrophage-derived ceruloplasmin in inflammatory bowel disease. Gut 62:209–219Google Scholar
  3. Banha J, Marques I, Oliveira R, Paixao E, Pereira D, Malho R, Penque D, Costa L (2008) Ceruloplasmin expression by human peripheral blood lymphocytes; a new link between immunity and iron metabolism. Free Rad Biol Med 44:483–492Google Scholar
  4. Bento I, Peixoto C, Zaitsev VN, Lindley PF (2007) Ceruloplasmin revisited: structural and functional roles of various metal cation-binding sites. Acta Crystallogr D 63:240–248Google Scholar
  5. Bielli P, Calabrese L (2002) Structure and function relationships in ceruloplasmin: a ‘moonlighting’ protein. Cell Mol Life Sci 59:1413–1427Google Scholar
  6. Brummel-Ziedins KE, Whelihan MF, Gissel M, Mann KG, Rivard GE (2009) Thrombin generation and bleeding in hemophilia A. Hemophilia 15:1118–1125Google Scholar
  7. Chapman AL, Mocatta TJ, Shiva S, Seidel A, Chen B, Khalilova I, Paumann-Page ME, Jameson GN, Winterbourn CC, Kettle AJ (2013) Ceruloplasmin is an endogenous inhibitor of myeloperoxidase. J Biol Chem 288:6465–6477Google Scholar
  8. Chen J, Chung DW, Le J, Ling M, Konkle BA, López JA (2013) Normal cleavage of von Willebrand factor by ADAMTS13 in the absence of factor VIII in patients with severe hemophilia A. J Thromb Haemost 11:1769–1772Google Scholar
  9. Cherukuri S, Potla R, Sarkar J, Nurko S, Harris ZL, Fox PL (2005) Unexpected role of ceruloplasmin in intestinal iron absorption. Cell Metab 2:309–319Google Scholar
  10. Church WR, Jernigan RL, Toole J, Hewick RM, Knopf J, Knutson GJ, Nesheim ME, Mann KG, Fass DN (1984) Coagulation factors V and VIII and ceruloplasmin constitute a family of structurally related proteins. Proc Natl Acad Sci USA 81:6934–6937Google Scholar
  11. Coffey MJ, Phare SM, Peters-Golden M (2000) Prolonged exposure to lipopolysaccharide inhibits macrophage 5-lipoxygenase metabolism via induction of nitric oxide synthesis. J Immunol 165:3592–3598Google Scholar
  12. Curzon G (1961) Some properties of coupled iron-caeruloplasmin oxidation systems. Biochem J 79:656–663Google Scholar
  13. Curzon G, O’Reilly S (1960) A coupled iron-caeruloplasmin oxidation system. Biochem Biophys Res Commun 2:284–286Google Scholar
  14. De Domenico I, Ward DM, di Patti MC, Jeong SY, David S, Musci G, Kaplan J (2007) Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin. EMBO J 26:2823–2831Google Scholar
  15. De Filippis V, Vassiliev VB, Beltramini M, Fontana A, Salvato B, Gaitskhoki VS (1996) Evidence for the molten globule state of human apo-ceruloplasmin. Biochim Biophys Acta 1297:119–123Google Scholar
  16. Donley SA, Ilagan BJ, Rim H, Linder MC (2002) Copper transport to mammary gland and milk during lactation in rats. Am J Physiol Endocrinol Metab 283:E667–E675Google Scholar
  17. Farver O, Bendahl L, Skov LK, Pecht I (1999) Human ceruloplasmin. Intramolecular electron transfer kinetics and equilibration. J Biol Chem 274:26135–26140Google Scholar
  18. Fee JA (1975) Copper proteins. Systems containing the “blue”copper center. Structure and Bonding. Springer, Berlin, pp 1–61Google Scholar
  19. Floris G, Medda R, Padiglia A, Musci G (2000) The physiopathological significance of ceruloplasmin. A possible therapeutic approach. Biochem Pharmacol 60:1735–1741Google Scholar
  20. Fortna RR, Watson HA, Nyquist SE (1999) Glycosyl phosphatidylinositol-anchored ceruloplasmin is expressed by rat Sertoli cells and is concentrated in detergent-insoluble membrane fractions. Biol Reprod 61:1042–1049Google Scholar
  21. Freeman S, Daniel E (1973) Dissociation and reconstitution of human ceruloplasmin. Biochemistry 12:4806–4810Google Scholar
  22. Frieden E (1980) Caeruloplasmin: a multi-functional metalloprotein of vertebrate plasma. Biological Roles of Copper; Ciba Fndn Symp-79. Excerpta Medica, Amsterdam, pp 93–124Google Scholar
  23. Gallwitz M, Enoksson M, Thorpe M, Hellman L (2012) The extended cleavage specificity of human thrombin. PLoS ONE 7:e31756Google Scholar
  24. Gerster JC, Busso N (2003) Arthritis is linked to local and systemic activation of coagulation and fibrinolysis pathways. J Thromb Haemost 1:2510–2515Google Scholar
  25. Griffin SV, Chapman PT, Lianos EA, Lockwood CM (1999) The inhibition of myeloperoxidase by ceruloplasmin can be reversed by anti-myeloperoxidase antibodies. Kidney Int 55:917–925Google Scholar
  26. Guillen C, McInnes IB, Vaughan D, Speekenbrink AB, Brock JH (2000) The effects of local administration of lactoferrin on inflammation in murine autoimmune and infectious arthritis. Arthritis Rheum 43:2073–2080Google Scholar
  27. Harris ZL, Takahashi Y, Miyajima H, Serizawa M, Macgillivray RT, Gitlin JD (1995) Aceruloplasminemia: molecular characterization of this disorder of iron metabolism. Proc Natl Acad Sci USA 92:2539–2543Google Scholar
  28. Harris ZL, Migas MC, Hughes AE, Logan JI, Gitlin JD (1996) Familial dementia due to a frameshift mutation in the caeruloplasmin gene. Q J Med 89:355–359Google Scholar
  29. Harris ZL, Klomp LW, Gitlin JD (1998) Aceruloplasminemia: an inherited neurodegenerative disease with impairment of iron homeostasis. Am J Clin Nutr 67:972S–977SGoogle Scholar
  30. Harris ZL, Durley AP, Man TK, Gitlin JD (1999) Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proc Natl Acad Sci USA 96:10812–10817Google Scholar
  31. Hellman NE, Kono S, Mancini GM, Hoogeboom AJ, De Jong GJ, Gitlin JD (2002) Mechanisms of copper incorporation into human ceruloplasmin. J Biol Chem 277:46632–46638Google Scholar
  32. Holmberg CG (1944) On the presence of a laccase-like enzyme in serum and its relation to the copper in serum. Acta Physiol Scand 8:227–229Google Scholar
  33. Holmberg CG, Laurell CB (1948) Investigations in serum copper II. Acta Chem Scand 2:550–556Google Scholar
  34. Holmberg CG, Laurell CB (1951) Investigations in serum copper III. Acta Chem Scand 5:476–480Google Scholar
  35. Hudson DM, Krisinger MJ, Griffiths TA, MacGillivray RTA (2008) Neither human hephaestin nor ceruloplasmin forms a stable complex with transferrin. J Cell Biochem 103:1849–1855Google Scholar
  36. Iwata T, Kantarci A, Yagi M, Jackson T, Hasturk H, Kurihara H, van Dyke TE (2009) J Periodontol 80:1300–1306Google Scholar
  37. Jennette JC, Falk RJ, Gasim AH (2011) Pathogenesis of antineutrophil cytoplasmic autoantibody vasculitis. Curr Opin Nephrol Hypertens 20:263–270Google Scholar
  38. Jeong SY, David S (2003) Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system. J Biol Chem 278:2714–27148Google Scholar
  39. Kasper CB, Deutsch HF (1963) Physicochemical studies of human ceruloplasmin. J Biol Chem 238:2325–2337Google Scholar
  40. Kemna EH, Tjalsma H, Willems HL, Swinkels DW (2008) Hepcidin: from discovery to differential diagnosis. Haematologica 93:90–97Google Scholar
  41. Kettle AJ, Winterbourn CC (1997) Myeloperoxidase. A key regulator of neutrophil oxidant production. Redox Rep 3:3–15Google Scholar
  42. Kim IG, Park SY (1998) Requirement of intact human ceruloplasmin for the glutathione-linked peroxidase activity. FEBS Lett 437:293–296Google Scholar
  43. Kingston IB, Kingston BL, Putnam FW (1977) Chemical evidence that proteolytic cleavage causes the heterogeneity present in human ceruloplasmin preparations. Proc Natl Acad Sci USA 74:5377–5381Google Scholar
  44. Klebanoff SJ (1970) Myeloperoxidase: contribution to the microbicidal activity of intact leukocytes. Science 169:1095–1097Google Scholar
  45. Klomp LWJ, Gitlin JD (1996) Expression of the ceruloplasmin gene in the human retina and brain: implications for a pathogenic model in aceruloplasminemia. Hum Mol Genet 5:1989–1996Google Scholar
  46. Kono S (2013) Aceruloplasminemia: an update. Int Rev Neurobiol 110:125–151Google Scholar
  47. Kono S, Yoshida K, Tomosugi N, Terada T, Hamaya Y, Kanaoka S, Miyajima H (2010) Biological effects of mutant ceruloplasmn on hepcidin-mediated internalization of ferroportin. Biochim Biophys Acta 1802:968–975Google Scholar
  48. Koschinsky ML, Funk WD, van Oost BA, MacGillivray RT (1986) Complete cDNA sequence of human preceruloplasmin. Proc Natl Acad Sci USA 83:5086–5090. Google Scholar
  49. Kostevich VA, Sokolov AV, Grudinina NA, Zakharova ET, Samygina VR, Vasilyev VB (2015) Interaction of macrophage migration inhibitory factor with ceruloplasmin: role of labile copper ions. Biometals 25:817–826Google Scholar
  50. Linder MC (2010) Nutritional biochemistry of copper, with emphasis on the perinatal period. In: Avigliano L, Rossi L (eds) Biochemical Aspects of Human Nutrition. Research Signpost, Trivandrum, pp 143–179Google Scholar
  51. Linder MC (2016) Ceruloplasmin and other copper binding components of blood plasma and their functions: an update. Metallomics 8:887–905Google Scholar
  52. LindleyP Card G, Zaitseva I, Zaitsev VN, Reinhammar B, Selin-Lindgren E, Yoshida K (1997) An X-ray structural study of human ceruloplasmin in relation to ferroxidase activity. J Biol Inorg Chem 2:454–463Google Scholar
  53. Logan JI, Harveyson KB, Wisdom GB, Hughes AE, Archbold GP (1994) Hereditary caeruloplasmin deficiency, dementia and diabetes mellitus. Q J Med 87:663–670Google Scholar
  54. Lu Y, Roe JA, Gralla EB, Valentine JS (1993) Metalloprotein ligand redesign: characterization of cooper-cysteinate proteins derived from yeast copper-zinc superoxide dismutase. In: Karlin KD, Tieklar Z (eds) Bioorganic Chemistry of Copper. Chapman & Hall, New York, pp 64–77Google Scholar
  55. Lutsenko S, LeShane ES, Shinde U (2007) Biochemical basis of regulation of human copper-transporting ATPases. Arch Biochem Biophysics 463:134–148. Google Scholar
  56. Magdoff-Fairchild B, Lovell FM, Low BW (1969) An X-ray crystallographic study of ceruloplasmin. Determination of molecular weight. J Biol Chem 244:3497–3499Google Scholar
  57. Malenica B, Rudolf M, Kozmar A (2004) Antineutrophil cytoplasmic antibodies (ANCA): diagnostic utility and potential role in the pathogenesis of vasculitis. Acta Dermatovenerol Croat 12(294):313Google Scholar
  58. Marques L, Auriac A, Willemetz A, Banha J, Silva B, Canonne-Hergaux F, Costa L (2012) Immune cells and hepatocytes express glycophosphatidylinositol-anchored ceruloplasmin at their cell surface. Blood Cells Mol Dis 48:110–120Google Scholar
  59. McCombs ML, Bowman BH (1976) Biochemical studies on human ceruloplasmin. Biochim Biophys Acta 434:452–461Google Scholar
  60. McDermott JA, Huber CT, Osaki S, Frieden E (1968) The role of iron in the activity of ceruloplasmin. Biochim Biophys Acta 151:541–544Google Scholar
  61. McKee DJ, Frieden E (1971) Binding of transition metal ions by ceruloplasmin (ferroxidase). Biochemistry 10:3880–3883Google Scholar
  62. Meyer Siegler KL, Iczkowski KA, Vera PL (2006) Macrophage migration inhibitory factor is increased in the urine of patients with urinary tract infection: macrophage migration inhibitory factor-protein complexes in human urine. J Urol 175(1523):1528Google Scholar
  63. Mittal B, Doroudchi MM, Jeong SY, Patel BN, David S (2003) Expression of a membrane-bound form of the ferroxidase ceruloplasmin by leptomeningeal cells. Glia 41:337–346Google Scholar
  64. Miyajima H, Nishimura Y, Sakamoto Mizoguchi K, Shimizu T, Honda N (1987) Familial apoceruloplasmin deficiency associated with blepharospasm and retinal degeneration. Neurology 37:761–767Google Scholar
  65. Morita H, Ikeda S-I, Yamamoto K, Morita S, Yoshida K, Nomoto S, Kato M, Yanagisawa N (1995) Hereditary ceruloplasmin deficiency with hemosiderosis: a clinicopathological study of a Japanese family. Ann Neurol 37:646–656Google Scholar
  66. Moshkov KA, Lakatos S, Hajdu J, Zavodszky P, Neifakh SA (1979) Proteolysis of human ceruloplasmin. Some peptide bonds are particularly susceptible to proteolytic attack. Eur J Biochem 94:127–131Google Scholar
  67. Mostad EJ, Prohaska JR (2011) Glycophosphatidylinositol-linked ceruloplasmin is expressed in multiple rodent organs and is lower following dietary copper deficiency. Exp Biol Med 236:298–308Google Scholar
  68. Mukhopadhyay CK, Mazumder B, Lindley PF, Fox PL (1997) Identification of the prooxidant site of human ceruloplasmin: a model for oxidative damage by copper bound to protein surfaces. Proc Natl Acad Sci USA 94:11546–11551Google Scholar
  69. Naughton DP, Knappitt J, Fairburn K, Gaffney K, Blake DR, Grootveld M (1995) Detection and investigation of the molecular nature of low-molecular-mass copper ions in isolated rheumatoid knee-joint synovial fluid. FEBS Lett 361:167–172Google Scholar
  70. Ortel TL, Takahashi N, Putnam FW (1984) Structural model of human ceruloplasmin based on internal triplication, hydrophilic/hydrophobic character, and secondary structure of domains. Proc Natl Acad Sci USA 81:4761–4765Google Scholar
  71. Osaki S (1966) Kinetic studies of ferrous ion oxidation with crystalline human ferroxidase (ceruloplasmin). J Biol Chem 241:5053–5059Google Scholar
  72. Osaki S, Johnson DA (1969) Mobilization of liver iron by ferroxidase (ceruloplasmin). J Biol Chem 244:5757–5768Google Scholar
  73. Osaki S, Walaas O (1968) Kinetic studies of ferrous ion oxidation with crystalline human ferroxidase. III. Effects of deuterium and temperature on the enzymic oxidation of ferrous ion. Arch Biochem Biophys 125:918–925Google Scholar
  74. Osaki S, Johnson DA, Frieden E (1966) The possible significance of the ferrous oxidase activity of ceruloplasmin in normal human serum. J Biol Chem 241:2746–2751Google Scholar
  75. Osaki S, Johnson DA, Frieden E (1971) The mobilization of iron from the perfused mammalian liver by a serum copper enzyme, ferroxidase I. J Biol Chem 246:3018–3023Google Scholar
  76. Panasenko OM, Chekanov AV, Vlasova II, Sokolov AV, Ageeva KV, Pulina MO, Cherkalina OS, Vasilyev VB (2008) A study of the effect of ceruloplasmin and lactoferrin on the chlorination activity of leukocytic myeloperoxidase using the chemiluminescence method. Biofizika 53:573–581Google Scholar
  77. Panasenko OM, Gorudko IV, Sokolov AV (2013) Hypochlorous acid as a precursor of free radicals in living systems. Biochemistry (Moscow) 78:1466–1489Google Scholar
  78. Park YS, Suzuki K, Mumby S, Taniguchi N, Gutteridge JM (2000) Antioxidant binding of caeruloplasmin to myeloperoxidase. Myeloperoxidase is inhibited, but oxidase, peroxidase and immunoreactive properties of caeruloplasmin remain intact. Free Radic Res 33:261–265Google Scholar
  79. Patel BN, David S (1997) A novel glycosylphosphatidylinositol-anchored form of ceruloplasmin is expressed by mammalian astrocytes. J Biol Chem 272:20185–20190Google Scholar
  80. Patel BN, Dunn RJ, David S (2000) Alternative RNA splicing generates a glycosylphosphatidylinositol-anchored form of ceruloplasmin in mammalian brain. J Biol Chem 275:4305–4310Google Scholar
  81. Pemberton S, Lindley P, Zaitzev V, Card G, Tuddenham EGD, Kemball-Clark G (1997) A molecular model for the triplicated A domains of human factor VIII based on the crustal structure of human ceruloplasmin. Blood 89:2413–2421Google Scholar
  82. Poillon WN, Bearn AG (1966) The molecular structure of human ceruloplasmin: evidence for subunits. Biochim Biophys Acta 127:407–427Google Scholar
  83. Polishchuk R, Di Pentima A, Lippincott-Scwartz J (2004) Delivery of raft-associated, GPI-anchored proteins to the apical surface of polarized MDCK cells by a transcytotic pathway. Nat Cell Biol 6:297–307Google Scholar
  84. Poulik MD (1962) Electrophoretic and immunological studies on structural subunits of human ceruloplasmin. Nature 194:842–844Google Scholar
  85. Poulik MD (1968) Heterogeneity and structure of human ceruloplasmin. Ann N Y Acad Sci 151:476–501Google Scholar
  86. Prozorovski VN, Rashkovetski LG, Vasiliev VB, Shavlovski MM, Neifakh SA (1982) Evidence that human ceruloplasmin molecule consists of homologous parts. Int J Pept Prot Res 19:40–53Google Scholar
  87. Pulina MO, Zakharova ET, Solovyov KV, Bass MG, Sokolov AV, Shavlovski MM, Vasilyev VB (2002) Studies of lactoferrin-ceruloplasmin complex. Biochem Cell Biol 80:35–39Google Scholar
  88. Qi W, Jiajie J, Shuangying H, Meng Z, Kuanyu L, Tong Q (2016) Iron together with lipid downregulates protein levels of ceruloplasmin in macrophages associated with rapid foam cell formation. J Atheroscler Thromb 23:1201–1211Google Scholar
  89. Reilly CA, Sorlie M, Aust SD (1998) Evidence for a protein–protein complex during iron loading into ferritin by ceruloplasmin. Arch Biochem Biophys 354:165–171Google Scholar
  90. Royle NJ, Irwin DM, Koschinsky ML, MacGillivray RT, Hamerton JL (1987) Human genes encoding prothrombin and ceruloplasmin map to 11p11-q12 and 3q21-24, respectively. Somatic Cell Mol Genet 13:285–292Google Scholar
  91. Rydén L (1971) Evidence for proteolytic fragments in commercial samples of human ceruloplasmin. FEBS Lett 18:321–325Google Scholar
  92. Rydén L (1972) Single-chain structure of human ceruloplasmin. Eur J Biochem 26:380–386Google Scholar
  93. Rydén L (1982) Model of the active site in the blue oxidases based on the ceruloplasmin-plastocyanin homology. Proc Natl Acad Sci USA 79:6767–6771Google Scholar
  94. Sabatucci A, Vachette P, Vasilyev VB, Beltramini M, Sokolov A, Pulina M, Salvato B, Angelucci CB, Maccarrone M, Cozzani I, Dainese E (2007) Structural characterization of the ceruloplasmin:lactoferrin complex in solution. J Mol Biol 371:1038–1046Google Scholar
  95. Samokyszyn VM, Miller DM, Reif DW, Aust SD (1989) Inhibition of superoxide and ferritin-dependent lipid peroxidation by ceruloplasmin. J Biol Chem 264:21–26Google Scholar
  96. Samygina VR, Sokolov AV, Pulina MO, Bartunik H, Vasilyev VB (2008) X-ray diffraction study of highly purified human ceruloplasmin. Crystallogr Rep 53:655–662Google Scholar
  97. Samygina VR, Sokolov AV, Bourenkov G, Petoukhov MV, Pulina MO, Zakharova ET, Vasilyev VB, Bartunik H, Svergun DI (2013) Ceruloplasmin: macromolecular assemblies with iron-containing acute phase proteins. PLoS ONE 8:1–12Google Scholar
  98. Samygina VR, Sokolov AV, Bourenkov G, Schneider TR, Anashkin VA, Kozlov SO, Kolmakov NN, Vasilyev VB (2017) Rat ceruloplasmin: new labile copper binding site and zinc/copper mosaic. Metallomics 9:1828–1838Google Scholar
  99. Sang QA (1995) Specific proteolysis of ceruloplasmin by leukocyte elastase. Biochem Mol Biol Int 37:573–581Google Scholar
  100. Sato M, Gitlin JD (1991) Mechanisms of copper incorporation during the biosynthesis of human ceruloplasmin. J Biol Chem 266:5128–5134Google Scholar
  101. Sawatzki G (1987) The role of iron binding proteins in bacterial infections. In: Winkelmann G, van der Helm D, Neilands JB (eds) Iron transport in microbes, plants and animals. VCH Veragsgesellschaft, Weinheim, pp 448–477Google Scholar
  102. Scott DL, Wolfe F, Huizinga TW (2010) Rheumatoid arthritis. Lancet 376:1094–1108Google Scholar
  103. Segelmark M, Persson B, Hellmark T, Wieslander J (1997) Binding and inhibition of myeloperoxidase (MPO): a major function of ceruloplasmin? Clin Exp Immunol 108:167–174Google Scholar
  104. Shen BW, Spiegel PC, Chang C-H, Huh J-W, Lee J-C, Kim J, Kim Y-H, Stoddard BL (2008) The tertiary structure and domain organization of coagulation factor VIII. Blood 111:1240–1247Google Scholar
  105. Shiva S, Wang X, Ringwood LA, Xu X, Yuditskaya S, Annavajjhala V, Miyajima H, Hogg N, Harris ZL, Gladwin MT (2006) Ceruloplasmin is a NO oxidase and nitrite synthase that determines endocrine NO homeostasis. Nat Chem Biol 2:486–493Google Scholar
  106. Shokeir MHK (1973) The molecular structure of human ceruloplasmin: a proposed model. Clin Biochem 6:9–14Google Scholar
  107. Simons K, Bearn AG (1969) Isolation and partial characterization of the polypeptide chains of human ceruloplasmin. Biochim Biophys Acta 175:260–270Google Scholar
  108. So AK, Varisco PA, Kemkes-Matthes B, Herkenne-Morard C, Chobaz-Peclat V, Gerster JC, Busso N (2003) Arthritis is linked to local and systemic activation of coagulation and fibrinolysis pathways. J Thromb Haemost 1:2510–2515Google Scholar
  109. Sokolov AV, Zakharova ET, Shavlovski MM, Vasilyev VB (2005a) Isolation of stable human ceruloplasmin and its interaction with salmon protamine. Russ J Bioorg Chem 31:238–248Google Scholar
  110. Sokolov AV, Pulina MO, Zakharova ET, Shavlovski MM, Vasilyev VB (2005b) Effect of lactoferrin on the ferroxidase activity of ceruloplasmin. Biochemistry (Moscow) 70:1015–1019Google Scholar
  111. Sokolov AV, Pulina MO, Zakharova ET, Susorova AS, Runova OL, Kolodkin NI, Vasilyev VB (2006) Identification and isolation from breast milk of ceruloplasmin–lactoferrin complex. Biochemistry (Moscow) 71(160):166Google Scholar
  112. Sokolov AV, Pulina MO, Ageeva KV, Ayrapetov MI, Berlov MN, Volgin GN, Markov AG, Yablonsky PK, Kolodkin NI, Zakharova ET, Vasilyev VB (2007a) Interaction of ceruloplasmin, lactoferrin, and myeloperoxidase. Biochemistry (Moscow) 72:409–415Google Scholar
  113. Sokolov AV, Pulina MO, Ageeva KV, Runova OL, Zakharova ET, Vasilyev VB (2007b) Identification of leukocyte cationic proteins that interact with ceruloplasmin. Biochemistry (Moscow) 2:872–877Google Scholar
  114. Sokolov AV, Ageeva KV, Pulina MO, Cherkalina OS, Samygina VR, Vlasova II, Panasenko OM, Zakharova ET, Vasilyev VB (2008) Ceruloplasmin and myeloperoxidase in complex affect the enzymatic properties of each other. Free Radic Res 42:989–998Google Scholar
  115. Sokolov AV, Pulina MO, Ageeva KV, Tcherkalina OS, Zakharova ET, Vasilyev VB (2009a) Identification of complexes formed by ceruloplasmin with matrix metalloproteinases 2 and 12. Biochemistry (Moscow) 74:1388–1392Google Scholar
  116. Sokolov AV, Ageeva KV, Pulina MO, Zakharova ET, Vasilyev VB (2009b) Effect of lactoferrin on oxidative features of ceruloplasmin. Biometals 22:521–529Google Scholar
  117. Sokolov AV, Prozorovskii VN, Vasilyev VB (2009c) Study of interaction of ceruloplasmin, lactoferrin, and myeloperoxidase by photon correlation spectroscopy. Biochemistry (Moscow) 74:1225–1227Google Scholar
  118. Sokolov AV, Golenkina EA, Kostevich VA, Vasilyev VB, Sud’yina GF (2010) Interaction of ceruloplasmin and 5-lipoxygenase. Biochemistry (Moscow) 75:1464–1469Google Scholar
  119. Sokolov AV, Kostevich VA, Romanico DN, Zakharova ET, Vasilyev VB (2012) Two-stage method for purification of ceruloplasmin based on its interaction with neomycin. Biochemistry (Mosc) 77:631–838Google Scholar
  120. Sokolov AV, Kostevich VA, Runova OL, Gorudko IV, Vasilyev VB, Cherenkevich SN, Panasenko OM (2014) Proatherogenic modification of LDL by surface-bound myeloperoxidase. Chem Phys Lipids 180:72–80Google Scholar
  121. Sokolov AV, Acquasaliente L, Kostevich VA, Frasson R, Zakharova ET, Pontarollo G, Vasilyev VB, De Filippis V (2015a) Thrombin inhibits the anti-myeloperoxidase and ferroxidase functions of ceruloplasmin: relevance in rheumatoid arthritis. Free Radic Biol Med 86:279–294Google Scholar
  122. Sokolov AV, Kostevich VA, Zakharova ET, Samygina VR, Panasenko OM, Vasilyev VB (2015b) Interaction of ceruloplasmin with eosinophil peroxidase as compared to its interplay with myeloperoxidase: reciprocal effect on enzymatic properties. Free Radic Res 49:800–811Google Scholar
  123. Stoj C, Kosman DJ (2003) Cuprous oxidase activity of yeast Fet3p and human ceruloplasmin: implication for function. FEBS Lett 554:422–426Google Scholar
  124. Suarez-Almazor ME, Spooner C, Belseck E (2000) Penicillamine for treating rheumatoid arthritis. Cochrane Database Syst Rev 4:CD001460Google Scholar
  125. Swain JA, Darley-Usmar V, Gutteridge JM (1994) Peroxynitrite releases copper from caeruloplasmin: implications for atherosclerosis. FEBS Lett 342:49–52Google Scholar
  126. Takahashi N, Ortel TL, Putnam FW (1984) Single-chain structure of human ceruloplasmin: the complete amino acid sequence of the whole molecule. Proc Natl Acad Sci USA 81:390–394Google Scholar
  127. Takahashi Y, Miyajima S, Shirabe S, Nagataki S, Suenaga A, Gitlin JD (1996) Characterization of a nonsense mutation in the ceruloplasmin gene resulting in diabetes and neurodegenerative disease. Hum Mol Genet 5:81–84Google Scholar
  128. Tams JW, Johnsen AH, Fahrenkrug J (1999) Identification of pituitary adenylate cyclase-activating polypeptide1-38-binding factor in human plasma, as ceruloplasmin. Biochem J 341:271–276Google Scholar
  129. Taylor JC, Oey L (1982) Ceruloplasmin. Plasma inhibitor of the oxidative inactivation of 1-protease inhibitor. Am Rev Respir Dis 126:476–482Google Scholar
  130. Terada K, Kawarada Y, Miura N, Yasui O, Koyama K, Sugiyama T (1995) Copper incorporation into ceruloplasmin in rat livers. Biochim Biophys Acta 1270:58–62Google Scholar
  131. Thomas T, Schreiber G, Jaworowski A (1989) Developmental patterns of gene expression of secreted proteins in brain and choroid plexus. Dev Biol 134:38–47Google Scholar
  132. Vachette P, Dainese E, Vasilyev VB, Di Muro P, Beltramini M, Svergun DI, De Filippis V, Salvato B (2002) A key structural role for active site type 3 copper ions in human ceruloplasmin. J Biol Chem 277:40823–40831Google Scholar
  133. Van Eden ME, Aust SD (2000) Intact human ceruloplasmin is required for the incorporation of iron into human ferritin. Arch Biochem Biophys 381:119–126Google Scholar
  134. Varfolomeeva EY, Semenova EV, Sokolov AV, Aplin KD, Timofeeva KE, Vasilyev VB, Filatov MV (2016) Ceruloplasmin decreases respiratory burst reaction during pregnancy. Free Radical Res 50:909–919Google Scholar
  135. Vasilyev VB (2010) Interactions of caeruloplasmin with other proteins participating in inflammation. Bioch Soc Transact 38:947–951Google Scholar
  136. Vasilyev VB, Kachurin AM, Soroka NV (1988) Dismutation of superoxide radicals by ceruloplasmin—details of the mechanism. Biokhimiya 53:2051–2058Google Scholar
  137. Vassiliev VB, Kachurin AM, Rocco G-P, Beltramini M, Salvato B, Gaitskhoki VS (1997) Copper depletion/repletion of human ceruloplasmin is followed by the changes in its spectral features and functional properties. J Inorg Biochem 65:167–174Google Scholar
  138. Vassiliev V, Harris ZL, Zatta P (2005) Ceruloplasmin in neurodegenerative diseases. Brain Res Rev 49:633–640Google Scholar
  139. Walker FJ, Fay PJ (1990) Characterization of an interaction between protein C and ceruloplasmin. J Biol Chem 265:1834–1836Google Scholar
  140. Ward DM, Kaplan J (2012) Ferroportin-mediated iron transport: expression and regulation. Biochim Biophys Acta 1823:426–1433Google Scholar
  141. Wooten L, Shulze R, Lancey R, Lietzow M, Linder MC (1996) Ceruloplasmin is found in milk and amniotic fluid and may have a nutritional role. J Nutr Biochem 7:632–639Google Scholar
  142. Yang FM, Friedrichs WE, Cupples RL, Bonifacio MJ, Sanford JA, Horton WA, Bowman BH (1990) Human ceruloplasmin, tissue-specific expression of transcripts produced by alternative splicing. J Biol Chem 265:10780–10785Google Scholar
  143. Yang S, Hua Y, Nakamura T, Keep RF, Xi G (2006) Up-regulation of brain ceruloplasmin in thrombin preconditioning. Acta Neurochir Suppl (Wien) 96:203–206Google Scholar
  144. Yoshida K, Furihata K, Takeda S, Nakamura A, Yamamoto K, Morita H, Hiyamuta S, Ikeda S, Shimizu N, Yanagisawa N (1995) A mutation in the ceruloplasmin gene is associated with systemic hemosiderosis in humans. Nat Genet 9:267–272Google Scholar
  145. Young SN, Curzon G (1972) A method for obtaining linear reciprocal plots with caeruloplasmin and its application in a study of the kinetic parameters of caeruloplasmin substrates. Biochem J 129:273–283Google Scholar
  146. Zagryazhskaya AN, Lindner SC, Grishina ZV, Galkina SI, Steinhilber D, Sud’ina GF (2010) Nitric oxide mediates distinct effects of various LPS chemotypes on phagocytosis and leukotriene synthesis in human neutrophils. Int J Biochem Cell Biol 42:921–931Google Scholar
  147. Zaitsev VN, Zaitseva I, Papiz M, Lindley P (1999) An X-ray crystallographc study of the binding sites of the azide inhibitor and organic substrates to ceruloplasmin, a multicopper oxidase in the plasma. J Biol Inorg Chem 4:579–587Google Scholar
  148. Zaitseva I, Zaitsev V, Card G, Moshkov K, Bax B, Ralph A, Lindley P (1996) The X-ray structure of human serum ceruloplasmin at 3.1 Å: nature of the copper centres. J Biol Inorg Chem 1:15–23Google Scholar
  149. Zakharova ET, Shavlovski MM, Bass MG, Gridasova AA, Pulina MO, De Filippis V, Beltramini M, Di Muro P, Salvato B, Fontana A, Vasilyev VB, Gaitskhoki VS (2000) Interaction of lactoferrin with ceruloplasmin. Arch Biochem Biophys 374:222–228Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of Experimental MedicineSaint PetersburgRussia
  2. 2.Saint Petersburg State UniversitySaint PetersburgRussia

Personalised recommendations