Advertisement

BioMetals

pp 1–21 | Cite as

Channels, transporters and receptors for cadmium and cadmium complexes in eukaryotic cells: myths and facts

  • Frank ThévenodEmail author
  • Johannes Fels
  • Wing-Kee Lee
  • Ralf Zarbock
Article
  • 216 Downloads

Abstract

Cadmium (Cd2+) is a toxic and non-essential divalent metal ion in eukaryotic cells. Cells can only be targeted by Cd2+ if it hijacks physiological high-affinity entry pathways, which transport essential divalent metal ions in a process termed “ionic and molecular mimicry”. Hence, “free” Cd2+ ions and Cd2+ complexed with small organic molecules are transported across cellular membranes via ion channels, carriers and ATP hydrolyzing pumps, whereas receptor-mediated endocytosis (RME) internalizes Cd2+-protein complexes. Only Cd2+ transport pathways validated by stringent methodology, namely electrophysiology, 109Cd2+ tracer studies, inductively coupled plasma mass spectrometry, atomic absorption spectroscopy, Cd2+-sensitive fluorescent dyes, or specific ligand binding and internalization assays for RME are reviewed whereas indirect correlative studies are excluded. At toxicologically relevant concentrations in the submicromolar range, Cd2+ permeates voltage-dependent Ca2+ channels (“T-type” CaV3.1, CatSper), transient receptor potential (TRP) channels (TRPA1, TRPV5/6, TRPML1), solute carriers (SLCs) (DMT1/SLC11A2, ZIP8/SLC39A8, ZIP14/SLC39A14), amino acid/cystine transporters (SLC7A9/SLC3A1, SLC7A9/SLC7A13), and Cd2+-protein complexes are endocytosed by the lipocalin-2/NGAL receptor SLC22A17. Cd2+ transport via the mitochondrial Ca2+ uniporter, ATPases ABCC1/2/5 and transferrin receptor 1 is likely but requires further evidence. Cd2+ flux occurs through the influx carrier OCT2/SLC22A2, efflux MATE proteins SLC47A1/A2, the efflux ATPase ABCB1, and RME of Cd2+-metallothionein by the receptor megalin (low density lipoprotein receptor-related protein 2, LRP2):cubilin albeit at high concentrations thus questioning their relevance in Cd2+ loading. Which Cd2+-protein complexes are internalized by megalin:cubilin in vivo still needs to be determined. A stringent conservative and reductionist approach is mandatory to verify relevance of transport pathways for Cd2+ toxicity and to overcome dissemination of unsubstantiated conjectures.

Keywords

Cadmium toxicity Ca2+ channels Solute carriers ABC transporters Lipocalin-2 receptor Megalin 

Notes

Acknowledgements

Research in the laboratory was supported by the DFG, BMBF (01DN16039), the University of Witten/Herdecke and ZBAF. The authors thank Dr. Natascha A. Wolff (University of Witten/Herdecke) for valuable discussions.

References

  1. Abergel RJ, Clifton MC, Pizarro JC, Warner JA, Shuh DK, Strong RK, Raymond KN (2008) The siderocalin/enterobactin interaction: a link between mammalian immunity and bacterial iron transport. J Am Chem Soc 130:11524–11534.  https://doi.org/10.1021/ja803524w CrossRefPubMedPubMedCentralGoogle Scholar
  2. Abouhamed M et al (2006) Divalent metal transporter 1 in the kidney proximal tubule is expressed in late endosomes/lysosomal membranes: implications for renal handling of protein–metal complexes. Am J Physiol Renal Physiol 290:F1525–F1533.  https://doi.org/10.1152/ajprenal.00359.2005 CrossRefPubMedGoogle Scholar
  3. Abouhamed M, Wolff NA, Lee WK, Smith CP, Thévenod F (2007) Knockdown of endosomal/lysosomal divalent metal transporter 1 by RNA interference prevents cadmium-metallothionein-1 cytotoxicity in renal proximal tubule cells. Am J Physiol Renal Physiol 293:F705–F712.  https://doi.org/10.1152/ajprenal.00198.2007 CrossRefPubMedGoogle Scholar
  4. Adiele RC, Stevens D, Kamunde C (2010) Reciprocal enhancement of uptake and toxicity of cadmium and calcium in rainbow trout (Oncorhynchus mykiss) liver mitochondria. Aquat Toxicol 96:319–327.  https://doi.org/10.1016/j.aquatox.2009.11.019 CrossRefPubMedGoogle Scholar
  5. Adiele RC, Stevens D, Kamunde C (2012) Features of cadmium and calcium uptake and toxicity in rainbow trout (Oncorhynchus mykiss) mitochondria. Toxicol In Vitro 26:164–173.  https://doi.org/10.1016/j.tiv.2011.10.017 CrossRefPubMedGoogle Scholar
  6. Akintola DF, Sampson B, Fleck A (1995) Development of an enzyme-linked immunosorbent assay for human metallothionein-1 in plasma and urine. J Lab Clin Med 126:119–127PubMedGoogle Scholar
  7. Ballatori N, Krance SM, Marchan R, Hammond CL (2009) Plasma membrane glutathione transporters and their roles in cell physiology and pathophysiology. Mol Aspects Med 30:13–28.  https://doi.org/10.1016/j.mam.2008.08.004 CrossRefPubMedGoogle Scholar
  8. Bao G et al (2010) Iron traffics in circulation bound to a siderocalin (Ngal)-catechol complex. Nat Chem Biol 6:602–609.  https://doi.org/10.1038/nchembio.402 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Barbier O, Jacquillet G, Tauc M, Poujeol P, Cougnon M (2004) Acute study of interaction among cadmium, calcium, and zinc transport along the rat nephron in vivo. Am J Physiol Renal Physiol 287:F1067–F1075.  https://doi.org/10.1152/ajprenal.00120.2004 CrossRefPubMedGoogle Scholar
  10. Bennett KM, Liu J, Hoelting C, Stoll J (2011) Expression and analysis of two novel rat organic cation transporter homologs, SLC22A17 and SLC22A23. Mol Cell Biochem 352:143–154.  https://doi.org/10.1007/s11010-011-0748-y CrossRefPubMedPubMedCentralGoogle Scholar
  11. Beyer EC, Berthoud VM (2017) Gap junction structure: unraveled, but not fully revealed. F1000 Res 6:568.  https://doi.org/10.12688/f1000research.10490.1 CrossRefGoogle Scholar
  12. Beyersmann D, Hechtenberg S (1997) Cadmium, gene regulation, and cellular signalling in mammalian cells. Toxicol Appl Pharmacol 144:247–261.  https://doi.org/10.1006/taap.1997.8125 CrossRefPubMedGoogle Scholar
  13. Bolignano D, Donato V, Lacquaniti A, Fazio MR, Bono C, Coppolino G, Buemi M (2010) Neutrophil gelatinase-associated lipocalin (NGAL) in human neoplasias: a new protein enters the scene. Cancer Lett 288:10–16.  https://doi.org/10.1016/j.canlet.2009.05.027 CrossRefPubMedGoogle Scholar
  14. Borregaard N, Cowland JB (2006) Neutrophil gelatinase-associated lipocalin, a siderophore-binding eukaryotic protein. Biometals 19:211–215.  https://doi.org/10.1007/s10534-005-3251-7 CrossRefPubMedGoogle Scholar
  15. Bouron A, Kiselyov K, Oberwinkler J (2015) Permeation, regulation and control of expression of TRP channels by trace metal ions. Pflugers Arch 467:1143–1164.  https://doi.org/10.1007/s00424-014-1590-3 CrossRefPubMedGoogle Scholar
  16. Bressler JP, Olivi L, Cheong JH, Kim Y, Bannona D (2004) Divalent metal transporter 1 in lead and cadmium transport. Ann N Y Acad Sci 1012:142–152CrossRefPubMedGoogle Scholar
  17. Bruggeman IM, Temmink JH, van Bladeren PJ (1992) Effect of glutathione and cysteine on apical and basolateral uptake and toxicity of CdCl(2) in kidney cells (LLC-PK(1)). Toxicol In Vitro 6:195–200CrossRefPubMedGoogle Scholar
  18. Bystrom LM, Guzman ML, Rivella S (2014) Iron and reactive oxygen species: friends or foes of cancer cells? Antioxid Redox Signal 20:1917–1924.  https://doi.org/10.1089/ars.2012.5014 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cai X, Clapham DE (2008) Evolutionary genomics reveals lineage-specific gene loss and rapid evolution of a sperm-specific ion channel complex: CatSpers and CatSperbeta. PLoS ONE 3:e3569.  https://doi.org/10.1371/journal.pone.0003569 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Canonne-Hergaux F, Gros P (2002) Expression of the iron transporter DMT1 in kidney from normal and anemic mk mice. Kidney Int 62:147–156CrossRefPubMedGoogle Scholar
  21. Carriere P, Mantha M, Champagne-Paradis S, Jumarie C (2011) Characterization of basolateral-to-apical transepithelial transport of cadmium in intestinal TC7 cell monolayers. Biometals 24:857–874.  https://doi.org/10.1007/s10534-011-9440-7 CrossRefPubMedGoogle Scholar
  22. Cataldi M, Perez-Reyes E, Tsien RW (2002) Differences in apparent pore sizes of low and high voltage-activated Ca2+ channels. J Biol Chem 277:45969–45976.  https://doi.org/10.1074/jbc.M203922200 CrossRefPubMedGoogle Scholar
  23. Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555.  https://doi.org/10.1146/annurev.cellbio.16.1.521 CrossRefPubMedGoogle Scholar
  24. Cens T, Rousset M, Kajava A, Charnet P (2007) Molecular determinant for specific Ca/Ba selectivity profiles of low and high threshold Ca2+ channels. J Gen Physiol 130:415–425.  https://doi.org/10.1085/jgp.200709771 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Chasteen DN (1977) Human serotransferrin: structure and function. Coord Chem Rev 22:1–36CrossRefGoogle Scholar
  26. Christensen EI, Birn H (2002) Megalin and cubilin: multifunctional endocytic receptors. Nat Rev Mol Cell Biol 3:256–266.  https://doi.org/10.1038/nrm778 CrossRefPubMedGoogle Scholar
  27. Christensen EI, Birn H, Storm T, Weyer K, Nielsen R (2012) Endocytic receptors in the renal proximal tubule. Physiology (Bethesda) 27:223–236.  https://doi.org/10.1152/physiol.00022.2012 CrossRefGoogle Scholar
  28. Ciarimboli G et al (2010) Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions. Am J Pathol 176:1169–1180.  https://doi.org/10.2353/ajpath.2010.090610 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Clarkson TW (1993) Molecular and ionic mimicry of toxic metals. Annu Rev Pharmacol Toxicol 33:545–571CrossRefPubMedGoogle Scholar
  30. Coffey R, Ganz T (2017) Iron homeostasis: an anthropocentric perspective. J Biol Chem 292:12727–12734.  https://doi.org/10.1074/jbc.R117.781823 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Cole SP (2014) Targeting multidrug resistance protein 1 (MRP1, ABCC1): past, present, and future. Annu Rev Pharmacol Toxicol 54:95–117.  https://doi.org/10.1146/annurev-pharmtox-011613-135959 CrossRefPubMedGoogle Scholar
  32. Cornelis R et al (1996) Sample collection guidelines for trace elements in blood and urine. IUPAC Commission of Toxicology. J Trace Elem Med Biol 10:103–127CrossRefPubMedGoogle Scholar
  33. De Smet H, Blust R, Moens L (2001) Cadmium-binding to transferrin in the plasma of the common carp Cyprinus carpio. Comp Biochem Physiol C: Toxicol Pharmacol 128:45–53Google Scholar
  34. Dean M, Allikmets R (2001) Complete characterization of the human ABC gene family. J Bioenerg Biomembr 33:475–479CrossRefPubMedGoogle Scholar
  35. Deshpande CN et al (2018) Calcium is an essential cofactor for metal efflux by the ferroportin transporter family. Nat Commun 9:3075.  https://doi.org/10.1038/s41467-018-05446-4 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Devireddy LR, Teodoro JG, Richard FA, Green MR (2001) Induction of apoptosis by a secreted lipocalin that is transcriptionally regulated by IL-3 deprivation. Science 293:829–834.  https://doi.org/10.1126/science.1061075 CrossRefPubMedGoogle Scholar
  37. Devireddy LR, Gazin C, Zhu X, Green MR (2005) A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell 123:1293–1305CrossRefPubMedGoogle Scholar
  38. Devireddy LR, Hart DO, Goetz DH, Green MR (2010) A mammalian siderophore synthesized by an enzyme with a bacterial homolog involved in enterobactin production. Cell 141:1006–1017.  https://doi.org/10.1016/j.cell.2010.04.040 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Di Paola S, Scotto-Rosato A, Medina DL (2018) TRPML1: the Ca((2 +))retaker of the lysosome. Cell Calcium 69:112–121.  https://doi.org/10.1016/j.ceca.2017.06.006 CrossRefPubMedGoogle Scholar
  40. Dickson LE, Wagner MC, Sandoval RM, Molitoris BA (2014) The proximal tubule and albuminuria: really! J Am Soc Nephrol 25:443–453.  https://doi.org/10.1681/ASN.2013090950 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Dong XP, Cheng X, Mills E, Delling M, Wang F, Kurz T, Xu H (2008) The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature 455:992–996.  https://doi.org/10.1038/nature07311 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Dong XP, Wang X, Xu H (2010) TRP channels of intracellular membranes. J Neurochem 113:313–328.  https://doi.org/10.1111/j.1471-4159.2010.06626.x CrossRefPubMedPubMedCentralGoogle Scholar
  43. Donovan A et al (2000) Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403:776–781.  https://doi.org/10.1038/35001596 CrossRefPubMedGoogle Scholar
  44. Donovan A, Lima CA, Pinkus JL, Pinkus GS, Zon LI, Robine S, Andrews NC (2005) The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab 1:191–200CrossRefPubMedGoogle Scholar
  45. Dorta DJ et al (2003) A proposed sequence of events for cadmium-induced mitochondrial impairment. J Inorg Biochem 97:251–257CrossRefPubMedGoogle Scholar
  46. Drakesmith H, Nemeth E, Ganz T (2015) Ironing out ferroportin. Cell Metab 22:777–787.  https://doi.org/10.1016/j.cmet.2015.09.006 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Dudev T, Lim C (2012) Why voltage-gated Ca2+ and bacterial Na+ channels with the same EEEE motif in their selectivity filters confer opposite metal selectivity. Phys Chem Chem Phys 14:12451–12456.  https://doi.org/10.1039/c2cp00036a CrossRefPubMedGoogle Scholar
  48. Eakin CM, Knight JD, Morgan CJ, Gelfand MA, Miranker AD (2002) Formation of a copper specific binding site in non-native states of beta-2-microglobulin. Biochemistry 41:10646–10656CrossRefPubMedGoogle Scholar
  49. Elinder CG, Friberg L, Lind B, Jawaid M (1983) Lead and cadmium levels in blood samples from the general population of Sweden. Environ Res 30:233–253CrossRefPubMedGoogle Scholar
  50. Erfurt C, Roussa E, Thévenod F (2003) Apoptosis by Cd2+ or CdMT in proximal tubule cells: different uptake routes and permissive role of endo/lysosomal CdMT uptake. Am J Physiol Cell Physiol 285:C1367–C1376CrossRefPubMedGoogle Scholar
  51. Fiori MC, Reuss L, Cuello LG, Altenberg GA (2014) Functional analysis and regulation of purified connexin hemichannels Frontiers in physiology 5:71.  https://doi.org/10.3389/fphys.2014.00071 CrossRefPubMedGoogle Scholar
  52. Flower DR (1996) The lipocalin protein family: structure and function. Biochem J 318(Pt 1):1–14CrossRefPubMedPubMedCentralGoogle Scholar
  53. Fotiadis D, Kanai Y, Palacin M (2013) The SLC3 and SLC7 families of amino acid transporters. Mol Aspects Med 34:139–158.  https://doi.org/10.1016/j.mam.2012.10.007 CrossRefPubMedGoogle Scholar
  54. Frazer DM, Anderson GJ (2014) The regulation of iron transport. BioFactors 40:206–214.  https://doi.org/10.1002/biof.1148 CrossRefPubMedGoogle Scholar
  55. Freisinger E, Vasak M (2013) Cadmium in metallothioneins. Met Ions Life Sci 11:339–371.  https://doi.org/10.1007/978-94-007-5179-8_11 CrossRefPubMedGoogle Scholar
  56. Fujishiro H, Kubota K, Inoue D, Inoue A, Yanagiya T, Enomoto S, Himeno S (2011) Cross-resistance of cadmium-resistant cells to manganese is associated with reduced accumulation of both cadmium and manganese. Toxicology 280:118–125.  https://doi.org/10.1016/j.tox.2010.12.002 CrossRefPubMedGoogle Scholar
  57. Gadsby DC, Vergani P, Csanady L (2006) The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature 440:477–483.  https://doi.org/10.1038/nature04712 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Galaske RG, Van Liew JB, Feld LG (1979) Filtration and reabsorption of endogenous low-molecular-weight protein in the rat kidney. Kidney Int 16:394–403CrossRefPubMedGoogle Scholar
  59. Garrett SH, Sens MA, Todd JH, Somji S, Sens DA (1999) Expression of MT-3 protein in the human kidney. Toxicol Lett 105:207–214CrossRefPubMedGoogle Scholar
  60. Garza-Lopez E, Chavez JC, Santana-Calvo C, Lopez-Gonzalez I, Nishigaki T (2016) Cd(2+) sensitivity and permeability of a low voltage-activated Ca(2+) channel with CatSper-like selectivity filter. Cell Calcium 60:41–50.  https://doi.org/10.1016/j.ceca.2016.03.011 CrossRefPubMedGoogle Scholar
  61. Girijashanker K et al (2008) Slc39a14 gene encodes ZIP14, a metal/bicarbonate symporter: similarities to the ZIP8 transporter. Mol Pharmacol 73:1413–1423.  https://doi.org/10.1124/mol.107.043588 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Goumakos W, Laussac JP, Sarkar B (1991) Binding of cadmium(II) and zinc(II) to human and dog serum albumins: an equilibrium dialysis and 113Cd-NMR study. Biochem Cell Biol 69:809–820CrossRefPubMedGoogle Scholar
  63. Gunshin H et al (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–488.  https://doi.org/10.1038/41343 CrossRefPubMedGoogle Scholar
  64. Harris WR, Madsen LJ (1988) Equilibrium studies on the binding of cadmium(II) to human serum transferrin. Biochemistry 27:284–288CrossRefPubMedGoogle Scholar
  65. He L, Girijashanker K, Dalton TP, Reed J, Li H, Soleimani M, Nebert DW (2006) ZIP8, member of the solute-carrier-39 (SLC39) metal-transporter family: characterization of transporter properties. Mol Pharmacol 70:171–180.  https://doi.org/10.1124/mol.106.024521 CrossRefPubMedGoogle Scholar
  66. Hirning LD, Fox AP, McCleskey EW, Olivera BM, Thayer SA, Miller RJ, Tsien RW (1988) Dominant role of N-type Ca2+ channels in evoked release of norepinephrine from sympathetic neurons. Science 239:57–61CrossRefPubMedGoogle Scholar
  67. Hoch E, Lin W, Chai J, Hershfinkel M, Fu D, Sekler I (2012) Histidine pairing at the metal transport site of mammalian ZnT transporters controls Zn2+ over Cd2+ selectivity. Proc Natl Acad Sci USA 109:7202–7207.  https://doi.org/10.1073/pnas.1200362109 CrossRefPubMedGoogle Scholar
  68. Hvidberg V, Jacobsen C, Strong RK, Cowland JB, Moestrup SK, Borregaard N (2005) The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake. FEBS Lett 579:773–777.  https://doi.org/10.1016/j.febslet.2004.12.031 CrossRefPubMedGoogle Scholar
  69. Illing AC, Shawki A, Cunningham CL, Mackenzie B (2012) Substrate profile and metal-ion selectivity of human divalent metal-ion transporter-1. J Biol Chem 287:30485–30496.  https://doi.org/10.1074/jbc.M112.364208 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Jarup L, Akesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208.  https://doi.org/10.1016/j.taap.2009.04.020 CrossRefPubMedGoogle Scholar
  71. Jenkitkasemwong S, Wang CY, Mackenzie B, Knutson MD (2012) Physiologic implications of metal-ion transport by ZIP14 and ZIP8. Biometals 25:643–655.  https://doi.org/10.1007/s10534-012-9526-x CrossRefPubMedPubMedCentralGoogle Scholar
  72. Jeong SH, Habeebu SS, Klaassen CD (2000) Cadmium decreases gap junctional intercellular communication in mouse liver. Toxicol Sci 57:156–166CrossRefPubMedGoogle Scholar
  73. Jorge-Nebert LF, Galvez-Peralta M, Landero Figueroa J, Somarathna M, Hojyo S, Fukada T, Nebert DW (2015) Comparing gene expression during cadmium uptake and distribution: untreated versus oral Cd-treated wild-type and ZIP14 knockout mice. Toxicol Sci 143:26–35.  https://doi.org/10.1093/toxsci/kfu204 CrossRefPubMedGoogle Scholar
  74. Kambe T, Tsuji T, Hashimoto A, Itsumura N (2015) The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol Rev 95:749–784.  https://doi.org/10.1152/physrev.00035.2014 CrossRefPubMedGoogle Scholar
  75. Kamer KJ, Mootha VK (2015) The molecular era of the mitochondrial calcium uniporter. Nat Rev Mol Cell Biol 16:545–553.  https://doi.org/10.1038/nrm4039 CrossRefPubMedGoogle Scholar
  76. Kimura O, Endo T, Hotta Y, Sakata M (2005) Effects of P-glycoprotein inhibitors on transepithelial transport of cadmium in cultured renal epithelial cells, LLC-PK1 and LLC-GA5-COL 150. Toxicology 208:123–132.  https://doi.org/10.1016/j.tox.2004.11.015 CrossRefPubMedGoogle Scholar
  77. Kippler M, Goessler W, Nermell B, Ekstrom EC, Lonnerdal B, El Arifeen S, Vahter M (2009) Factors influencing intestinal cadmium uptake in pregnant Bangladeshi women—a prospective cohort study. Environ Res 109:914–921.  https://doi.org/10.1016/j.envres.2009.07.006 CrossRefPubMedGoogle Scholar
  78. Kjeldsen L, Johnsen AH, Sengelov H, Borregaard N (1993) Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem 268:10425–10432PubMedGoogle Scholar
  79. Kjeldsen L, Cowland JB, Borregaard N (2000) Human neutrophil gelatinase-associated lipocalin and homologous proteins in rat and mouse. Biochim Biophys Acta 1482:272–283CrossRefPubMedGoogle Scholar
  80. Klassen RB et al (2004) Megalin mediates renal uptake of heavy metal metallothionein complexes. Am J Physiol Renal Physiol 287:F393–F403.  https://doi.org/10.1152/ajprenal.00233.2003 CrossRefPubMedGoogle Scholar
  81. Koepsell H (2013) The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Aspects Med 34:413–435.  https://doi.org/10.1016/j.mam.2012.10.010 CrossRefPubMedGoogle Scholar
  82. Koepsell H, Schmitt BM, Gorboulev V (2003) Organic cation transporters. Rev Physiol Biochem Pharmacol 150:36–90CrossRefPubMedGoogle Scholar
  83. Kogan I et al (2003) CFTR directly mediates nucleotide-regulated glutathione flux. EMBO J 22:1981–1989.  https://doi.org/10.1093/emboj/cdg194 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Koike A, Sou J, Ohishi A, Nishida K, Nagasawa K (2017) Inhibitory effect of divalent metal cations on zinc uptake via mouse Zrt-/Irt-like protein 8 (ZIP8). Life Sci 173:80–85.  https://doi.org/10.1016/j.lfs.2016.12.006 CrossRefPubMedGoogle Scholar
  85. Kovacs G, Danko T, Bergeron MJ, Balazs B, Suzuki Y, Zsembery A, Hediger MA (2011) Heavy metal cations permeate the TRPV6 epithelial cation channel. Cell Calcium 49:43–55.  https://doi.org/10.1016/j.ceca.2010.11.007 CrossRefPubMedGoogle Scholar
  86. Kovacs G, Montalbetti N, Franz MC, Graeter S, Simonin A, Hediger MA (2013) Human TRPV5 and TRPV6: key players in cadmium and zinc toxicity. Cell Calcium 54:276–286.  https://doi.org/10.1016/j.ceca.2013.07.003 CrossRefPubMedGoogle Scholar
  87. Kruh GD, Belinsky MG (2003) The MRP family of drug efflux pumps. Oncogene 22:7537–7552.  https://doi.org/10.1038/sj.onc.1206953 CrossRefPubMedGoogle Scholar
  88. Lacinova L, Klugbauer N, Hofmann F (2000) Regulation of the calcium channel alpha(1G) subunit by divalent cations and organic blockers. Neuropharmacology 39:1254–1266CrossRefPubMedGoogle Scholar
  89. Langelueddecke C, Roussa E, Fenton RA, Wolff NA, Lee WK, Thévenod F (2012) Lipocalin-2 (24p3/neutrophil gelatinase-associated lipocalin (NGAL)) receptor is expressed in distal nephron and mediates protein endocytosis. J Biol Chem 287:159–169.  https://doi.org/10.1074/jbc.M111.308296 CrossRefPubMedGoogle Scholar
  90. Langelueddecke C, Roussa E, Fenton RA, Thévenod F (2013) Expression and function of the lipocalin-2 (24p3/NGAL) receptor in rodent and human intestinal epithelia. PLoS ONE 8:e71586.  https://doi.org/10.1371/journal.pone.0071586 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Langelueddecke C, Lee WK, Thévenod F (2014) Differential transcytosis and toxicity of the hNGAL receptor ligands cadmium-metallothionein and cadmium-phytochelatin in colon-like Caco-2 cells: implications for in vivo cadmium toxicity. Toxicol Lett 226:228–235.  https://doi.org/10.1016/j.toxlet.2014.01.049 CrossRefPubMedGoogle Scholar
  92. Lee WK, Bork U, Gholamrezaei F, Thévenod F (2005) Cd(2+)-induced cytochrome c release in apoptotic proximal tubule cells: role of mitochondrial permeability transition pore and Ca(2+) uniporter. Am J Physiol Renal Physiol 288:F27–F39.  https://doi.org/10.1152/ajprenal.00224.2004 CrossRefPubMedGoogle Scholar
  93. Lee WK, Torchalski B, Kohistani N, Thévenod F (2011) ABCB1 protects kidney proximal tubule cells against cadmium-induced apoptosis: roles of cadmium and ceramide transport. Toxicol Sci 121:343–356.  https://doi.org/10.1093/toxsci/kfr071 CrossRefPubMedGoogle Scholar
  94. Lee WK et al (2017) Initial autophagic protection switches to disruption of autophagic flux by lysosomal instability during cadmium stress accrual in renal NRK-52E cells. Arch Toxicol 91:3225–3245.  https://doi.org/10.1007/s00204-017-1942-9 CrossRefPubMedGoogle Scholar
  95. L’Hoste S et al (2009) CFTR mediates cadmium-induced apoptosis through modulation of ROS level in mouse proximal tubule cells. Free Radic Biol Med 46:1017–1031.  https://doi.org/10.1016/j.freeradbiomed.2008.12.009 CrossRefPubMedGoogle Scholar
  96. Li ZS, Lu YP, Zhen RG, Szczypka M, Thiele DJ, Rea PA (1997) A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis(glutathionato)cadmium. Proc Natl Acad Sci USA 94:42–47CrossRefPubMedGoogle Scholar
  97. Li M, Jiang J, Yue L (2006) Functional characterization of homo- and heteromeric channel kinases TRPM6 and TRPM7. J Gen Physiol 127:525–537.  https://doi.org/10.1085/jgp.200609502 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Liu J, Habeebu SS, Liu Y, Klaassen CD (1998a) Acute CdMT injection is not a good model to study chronic Cd nephropathy: comparison of chronic CdCl2 and CdMT exposure with acute CdMT injection in rats. Toxicol Appl Pharmacol 153:48–58.  https://doi.org/10.1006/taap.1998.8506 CrossRefPubMedGoogle Scholar
  99. Liu J, Liu Y, Habeebu SS, Klaassen CD (1998b) Susceptibility of MT-null mice to chronic CdCl2-induced nephrotoxicity indicates that renal injury is not mediated by the CdMT complex. Toxicol Sci 46:197–203.  https://doi.org/10.1006/toxs.1998.2541 CrossRefPubMedGoogle Scholar
  100. Liu J, Goyer RA, Waalkes MP (2008a) Toxic effects of metals. In: Klaasen CD (ed) Casarett & Doull’s toxicology: the basic science of poisons, 7th edn. McGraw -Hill, New York, pp 931–979Google Scholar
  101. Liu Z et al (2008b) Cd2+ versus Zn2+ uptake by the ZIP8 HCO3-dependent symporter: kinetics, electrogenicity and trafficking. Biochem Biophys Res Commun 365:814–820.  https://doi.org/10.1016/j.bbrc.2007.11.067 CrossRefPubMedGoogle Scholar
  102. Long Y, Li Q, Li J, Cui Z (2011a) Molecular analysis, developmental function and heavy metal-induced expression of ABCC5 in zebrafish. Comp Biochem Physiol B 158:46–55.  https://doi.org/10.1016/j.cbpb.2010.09.005 CrossRefPubMedGoogle Scholar
  103. Long Y, Li Q, Zhong S, Wang Y, Cui Z (2011b) Molecular characterization and functions of zebrafish ABCC2 in cellular efflux of heavy metals. Comp Biochem Physiol C 153:381–391.  https://doi.org/10.1016/j.cbpc.2011.01.002 CrossRefGoogle Scholar
  104. Lopin KV, Thévenod F, Page JC, Jones SW (2012) Cd(2)(+) block and permeation of CaV3.1 (alpha1G) T-type calcium channels: candidate mechanism for Cd(2)(+) influx. Mol Pharmacol 82:1183–1193.  https://doi.org/10.1124/mol.112.080176 CrossRefPubMedGoogle Scholar
  105. Madsen KM, Harris RH, Tisher CC (1982) Uptake and intracellular distribution of ferritin in the rat distal convoluted tubule. Kidney Int 21:354–361CrossRefPubMedGoogle Scholar
  106. Marcus Y (1988) Ionic radii in aqueous solutions Chem Rev 88:1475–1498Google Scholar
  107. Maret W, Moulis JM (2013) The bioinorganic chemistry of cadmium in the context of its toxicity. Metal Ions Life Sci 11:1–29.  https://doi.org/10.1007/978-94-007-5179-8_1 CrossRefGoogle Scholar
  108. Martineau C, Abed E, Médina G, Jomphe LA, Mantha M, Jumarie C, Moreau R (2010) Involvement of transient receptor potential melastatin-related 7 (TRPM7) channels in cadmium uptake and cytotoxicity in MC3T3-E1 osteoblasts. Toxicol Lett 199(3):357–363CrossRefPubMedGoogle Scholar
  109. McAleer MA, Breen MA, White NL, Matthews N (1999) pABC11 (also known as MOAT-C and MRP5), a member of the ABC family of proteins, has anion transporter activity but does not confer multidrug resistance when overexpressed in human embryonic kidney 293 cells. J Biol Chem 274:23541–23548CrossRefPubMedGoogle Scholar
  110. Milnerowicz H, Bizon A (2010) Determination of metallothionein in biological fluids using enzyme-linked immunoassay with commercial antibody. Acta Biochim Pol 57:99–104PubMedGoogle Scholar
  111. Mitchell CJ, Shawki A, Ganz T, Nemeth E, Mackenzie B (2014) Functional properties of human ferroportin, a cellular iron exporter reactive also with cobalt and zinc. Am J Physiol Cell Physiol 306:C450–C459.  https://doi.org/10.1152/ajpcell.00348.2013 CrossRefPubMedGoogle Scholar
  112. Miura S, Takahashi K, Imagawa T, Uchida K, Saito S, Tominaga M, Ohta T (2013) Involvement of TRPA1 activation in acute pain induced by cadmium in mice. Mol Pain 9:7.  https://doi.org/10.1186/1744-8069-9-7 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Montell C (2005) The TRP superfamily of cation channels. Sci STKE.  https://doi.org/10.1126/stke.2722005re3 CrossRefPubMedGoogle Scholar
  114. Mulier M, Vriens J, Voets T (2017) TRP channel pores and local calcium signals. Cell Calcium 66:19–24.  https://doi.org/10.1016/j.ceca.2017.04.007 CrossRefPubMedGoogle Scholar
  115. Nagamine T et al (2007) Analysis of tissue cadmium distribution in chronic cadmium-exposed mice using in-air micro-PIXE. Biol Trace Elem Res 117:115–126.  https://doi.org/10.1007/BF02698088 CrossRefPubMedGoogle Scholar
  116. Nagamori S et al (2016) Novel cystine transporter in renal proximal tubule identified as a missing partner of cystinuria-related plasma membrane protein rBAT/SLC3A1. Proc Natl Acad Sci USA 113:775–780.  https://doi.org/10.1073/pnas.1519959113 CrossRefPubMedGoogle Scholar
  117. Nemeth E et al (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306:2090–2093.  https://doi.org/10.1126/science.1104742 CrossRefPubMedGoogle Scholar
  118. Nemmiche S, Guiraud P (2016) Cadmium-induced oxidative damages in the human BJAB cells correlate with changes in intracellular trace elements levels and zinc transporters expression. Toxicol In Vitro 37:169–177.  https://doi.org/10.1016/j.tiv.2016.09.014 CrossRefPubMedGoogle Scholar
  119. Nies AT, Damme K, Kruck S, Schaeffeler E, Schwab M (2016) Structure and function of multidrug and toxin extrusion proteins (MATEs) and their relevance to drug therapy and personalized medicine. Arch Toxicol 90:1555–1584.  https://doi.org/10.1007/s00204-016-1728-5 CrossRefPubMedGoogle Scholar
  120. Nunez MT, Tapia V, Rojas A, Aguirre P, Gomez F, Nualart F (2010) Iron supply determines apical/basolateral membrane distribution of intestinal iron transporters DMT1 and ferroportin 1. Am J Physiol Cell Physiol 298:C477–C485.  https://doi.org/10.1152/ajpcell.00168.2009 CrossRefPubMedGoogle Scholar
  121. Ohrvik H, Tyden E, Artursson P, Oskarsson A, Tallkvist J (2013) Cadmium transport in a model of neonatal intestinal cells correlates to MRP1 and not DMT1 or FPN1. ISRN Toxicol 2013:892364.  https://doi.org/10.1155/2013/892364 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Okazaki Y, Ma Y, Yeh M, Yin H, Li Z, Yeh KY, Glass J (2012) DMT1 (IRE) expression in intestinal and erythroid cells is regulated by peripheral benzodiazepine receptor-associated protein 7. Am J Physiol Gastrointest Liver Physiol 302:G1180–G1190.  https://doi.org/10.1152/ajpgi.00545.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Okubo M, Yamada K, Hosoyamada M, Shibasaki T, Endou H (2003) Cadmium transport by human Nramp 2 expressed in Xenopus laevis oocytes. Toxicol Appl Pharmacol 187:162–167CrossRefPubMedGoogle Scholar
  124. Paragas N et al (2011) The Ngal reporter mouse detects the response of the kidney to injury in real time. Nat Med 17:216–222.  https://doi.org/10.1038/nm.2290 CrossRefPubMedPubMedCentralGoogle Scholar
  125. Parajuli LK, Nakajima C, Kulik A, Matsui K, Schneider T, Shigemoto R, Fukazawa Y (2012) Quantitative regional and ultrastructural localization of the Ca(v)2.3 subunit of R-type calcium channel in mouse brain. J Neurosci 32:13555–13567.  https://doi.org/10.1523/JNEUROSCI.1142-12.2012 CrossRefPubMedGoogle Scholar
  126. Perez-Reyes E (2003) Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 83:117–161.  https://doi.org/10.1152/physrev.00018.2002 CrossRefPubMedGoogle Scholar
  127. Prakriya M, Lewis RS (2015) Store-operated calcium channels. Physiol Rev 95:1383–1436.  https://doi.org/10.1152/physrev.00020.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  128. Prozialeck WC et al (2016) Evaluation of cystatin C as an early biomarker of cadmium nephrotoxicity in the rat. Biometals 29:131–146.  https://doi.org/10.1007/s10534-015-9903-3 CrossRefPubMedGoogle Scholar
  129. Richardson DR (2005) 24p3 and its receptor: dawn of a new iron age? Cell 123:1175–1177CrossRefPubMedGoogle Scholar
  130. Rizzuto R, De Stefani D, Raffaello A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13:566–578.  https://doi.org/10.1038/nrm3412 CrossRefPubMedGoogle Scholar
  131. Rozanski GM, Nath AR, Adams ME, Stanley EF (2013) Low voltage-activated calcium channels gate transmitter release at the dorsal root ganglion sandwich synapse. J Physiol 591:5575–5583.  https://doi.org/10.1113/jphysiol.2013.260281 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Sabolic I, Ljubojevic M, Herak-Kramberger CM, Brown D (2002) Cd-MT causes endocytosis of brush-border transporters in rat renal proximal tubules. Am J Physiol Renal Physiol 283:F1389–F1402CrossRefPubMedGoogle Scholar
  133. Sabolic I, Breljak D, Skarica M, Herak-Kramberger CM (2010) Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs. Biometals 23:897–926.  https://doi.org/10.1007/s10534-010-9351-z CrossRefPubMedGoogle Scholar
  134. Saddala MS, Kandimalla R, Adi PJ, Bhashyam SS, Asupatri UR (2017) Novel 1, 4-dihydropyridines for L-type calcium channel as antagonists for cadmium toxicity. Sci Rep 7:45211.  https://doi.org/10.1038/srep45211 CrossRefPubMedPubMedCentralGoogle Scholar
  135. Salmela SS, Vuori E, Huunan-Seppala A, Kilpio JO, Sumuvuori H (1983) Body burden of cadmium in man at low level of exposure. Sci Tot Environ 27:89–95CrossRefGoogle Scholar
  136. Santoyo-Sanchez MP, Pedraza-Chaverri J, Molina-Jijon E, Arreola-Mendoza L, Rodriguez-Munoz R, Barbier OC (2013) Impaired endocytosis in proximal tubule from subchronic exposure to cadmium involves angiotensin II type 1 and cubilin receptors. BMC Nephrol 14:211.  https://doi.org/10.1186/1471-2369-14-211 CrossRefPubMedPubMedCentralGoogle Scholar
  137. Sather WA, McCleskey EW (2003) Permeation and selectivity in calcium channels. Annu Rev Physiol 65:133–159.  https://doi.org/10.1146/annurev.physiol.65.092101.142345 CrossRefPubMedGoogle Scholar
  138. Schmidt-Ott KM, Mori K, Li JY, Kalandadze A, Cohen DJ, Devarajan P, Barasch J (2007) Dual action of neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol 18:407–413CrossRefPubMedGoogle Scholar
  139. Sharom FJ (2011) The P-glycoprotein multidrug transporter. Essays Biochem 50:161–178.  https://doi.org/10.1042/bse0500161 CrossRefPubMedGoogle Scholar
  140. Shawki A, Knight PB, Maliken BD, Niespodzany EJ, Mackenzie B (2012) H(+)-coupled divalent metal-ion transporter-1: functional properties, physiological roles and therapeutics. Curr Topics Membr 70:169–214.  https://doi.org/10.1016/B978-0-12-394316-3.00005-3 CrossRefGoogle Scholar
  141. Shuba YM (2014) Models of calcium permeation through T-type channels. Pflugers Arch 466:635–644.  https://doi.org/10.1007/s00424-013-1437-3 CrossRefPubMedGoogle Scholar
  142. Smith CP, Thévenod F (2009) Iron transport and the kidney. Biochim Biophys Acta 1790:724–730.  https://doi.org/10.1016/j.bbagen.2008.10.010 CrossRefPubMedGoogle Scholar
  143. Soodvilai S, Nantavishit J, Muanprasat C, Chatsudthipong V (2011) Renal organic cation transporters mediated cadmium-induced nephrotoxicity. Toxicol Lett 204:38–42.  https://doi.org/10.1016/j.toxlet.2011.04.005 CrossRefPubMedGoogle Scholar
  144. Srigiridhar K, Nair KM (1998) Iron-deficient intestine is more susceptible to peroxidative damage during iron supplementation in rats. Free Radic Biol Med 25:660–665CrossRefPubMedGoogle Scholar
  145. Thévenod F (2003) Nephrotoxicity and the proximal tubule. Insights from cadmium. Nephron Physiol 93:p87–p93.  https://doi.org/10.1159/000070241 CrossRefPubMedGoogle Scholar
  146. Thévenod F (2010) Catch me if you can! Novel aspects of cadmium transport in mammalian cells. Biometals 23:857–875.  https://doi.org/10.1007/s10534-010-9309-1 CrossRefPubMedGoogle Scholar
  147. Thévenod F (2018) Membrane transport proteins and receptors for cadmium and cadmium complexes. In: Thévenod F, Petering D, Templeton D, Lee W-K, Hartwig A (eds) Cadmium interaction with animal cells. Springer, Cham, pp 1–22CrossRefGoogle Scholar
  148. Thévenod F, Jones SW (1992) Cadmium block of calcium current in frog sympathetic neurons. Biophys J 63:162–168.  https://doi.org/10.1016/S0006-3495(92)81575-8 CrossRefPubMedPubMedCentralGoogle Scholar
  149. Thévenod F, Lee WK (2013a) Cadmium and cellular signaling cascades: interactions between cell death and survival pathways. Arch Toxicol 87:1743–1786.  https://doi.org/10.1007/s00204-013-1110-9 CrossRefPubMedGoogle Scholar
  150. Thévenod F, Lee WK (2013b) Toxicology of cadmium and its damage to Mammalian organs. Metal Ions Life Sci 11:415–490.  https://doi.org/10.1007/978-94-007-5179-8_14 CrossRefGoogle Scholar
  151. Thévenod F, Wolff NA (2016) Iron transport in the kidney: implications for physiology and cadmium nephrotoxicity. Metallomics 8:17–42.  https://doi.org/10.1039/c5mt00215j CrossRefPubMedGoogle Scholar
  152. Thévenod F, Friedmann JM, Katsen AD, Hauser IA (2000) Up-regulation of multidrug resistance P-glycoprotein via nuclear factor-kappaB activation protects kidney proximal tubule cells from cadmium- and reactive oxygen species-induced apoptosis. J Biol Chem 275:1887–1896CrossRefPubMedGoogle Scholar
  153. Thévenod F et al (2013) Substrate- and cell contact-dependent inhibitor affinity of human organic cation transporter 2: studies with two classical organic cation substrates and the novel substrate Cd2+. Mol Pharm 10:3045–3056.  https://doi.org/10.1021/mp400113d CrossRefPubMedGoogle Scholar
  154. Thijssen S, Maringwa J, Faes C, Lambrichts I, Van Kerkhove E (2007) Chronic exposure of mice to environmentally relevant, low doses of cadmium leads to early renal damage, not predicted by blood or urine cadmium levels. Toxicology 229:145–156CrossRefPubMedGoogle Scholar
  155. Tian J, Hu J, Chen M, Yin H, Miao P, Bai P, Yin J (2017) The use of mrp1-deficient (Danio rerio) zebrafish embryos to investigate the role of Mrp1 in the toxicity of cadmium chloride and benzo[a]pyrene. Aquat Toxicol 186:123–133.  https://doi.org/10.1016/j.aquatox.2017.03.004 CrossRefPubMedGoogle Scholar
  156. Tommasini R et al (1996) The human multidrug resistance-associated protein functionally complements the yeast cadmium resistance factor 1. Proc Natl Acad Sci USA 93:6743–6748CrossRefPubMedGoogle Scholar
  157. Torra M, To-Figueras J, Brunet M, Rodamilans M, Corbella J (1994) Total and metallothionein-bound cadmium in the liver and the kidney of a population in Barcelona (Spain). Bull Environ Contam Toxicol 53:509–515CrossRefPubMedGoogle Scholar
  158. Usai C, Barberis A, Moccagatta L, Marchetti C (1999) Pathways of cadmium influx in mammalian neurons. J Neurochem 72:2154–2161CrossRefPubMedGoogle Scholar
  159. Valiunas V, Cohen IS, Brink PR (2018) Defining the factors that affect solute permeation of gap junction channels Biochimica et biophysica acta. Biomembranes 1860:96–101.  https://doi.org/10.1016/j.bbamem.2017.07.002 CrossRefPubMedGoogle Scholar
  160. van de Graaf SF, Hoenderop JG, Bindels RJ (2006) Regulation of TRPV5 and TRPV6 by associated proteins. Am J Physiol Renal Physiol 290:F1295–F1302.  https://doi.org/10.1152/ajprenal.00443.2005 CrossRefPubMedGoogle Scholar
  161. van Goor MKC, Hoenderop JGJ, van der Wijst J (2017) TRP channels in calcium homeostasis: from hormonal control to structure-function relationship of TRPV5 and TRPV6. Biochim Biophys Acta 1864:883–893.  https://doi.org/10.1016/j.bbamcr.2016.11.027 CrossRefGoogle Scholar
  162. van Raaij S et al (2018) Tubular iron deposition and iron handling proteins in human healthy kidney and chronic kidney disease Scientific reports 8:9353.  https://doi.org/10.1038/s41598-018-27107-8 CrossRefPubMedGoogle Scholar
  163. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417.  https://doi.org/10.1146/annurev.biochem.75.103004.142819 CrossRefPubMedPubMedCentralGoogle Scholar
  164. Vinken M, Ceelen L, Vanhaecke T, Rogiers V (2010) Inhibition of gap junctional intercellular communication by toxic metals. Chem Res Toxicol 23:1862–1867.  https://doi.org/10.1021/tx100276f CrossRefPubMedGoogle Scholar
  165. Voets T, Talavera K, Owsianik G, Nilius B (2005) Sensing with TRP channels Nat Chem Biol 1:85–92.  https://doi.org/10.1038/nchembio0705-85 CrossRefPubMedGoogle Scholar
  166. Wang Y, Fang J, Leonard SS, Rao KM (2004) Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radic Biol Med 36:1434–1443.  https://doi.org/10.1016/j.freeradbiomed.2004.03.010 CrossRefPubMedGoogle Scholar
  167. Wang B et al (2007) Enhanced cadmium-induced testicular necrosis and renal proximal tubule damage caused by gene-dose increase in a Slc39a8-transgenic mouse line. Am J Physiol Cell Physiol 292:C1523–C1535.  https://doi.org/10.1152/ajpcell.00409.2006 CrossRefPubMedGoogle Scholar
  168. Wang L, Chen D, Wang H, Liu Z (2009) Effects of lead and/or cadmium on the expression of metallothionein in the kidney of rats. Biol Trace Elem Res 129:190–199.  https://doi.org/10.1007/s12011-008-8288-3 CrossRefPubMedGoogle Scholar
  169. Wang Y, Zalups RK, Barfuss DW (2010) Potential mechanisms involved in the absorptive transport of cadmium in isolated perfused rabbit renal proximal tubules. Toxicol Lett 193:61–68.  https://doi.org/10.1016/j.toxlet.2009.12.007 CrossRefPubMedGoogle Scholar
  170. Wang CY, Jenkitkasemwong S, Duarte S, Sparkman BK, Shawki A, Mackenzie B, Knutson MD (2012) ZIP8 is an iron and zinc transporter whose cell-surface expression is up-regulated by cellular iron loading. J Biol Chem 287:34032–34043.  https://doi.org/10.1074/jbc.M112.367284 CrossRefPubMedPubMedCentralGoogle Scholar
  171. Wang J, Wang J, Song W, Yang X, Zong W, Liu R (2016) Molecular mechanism investigation of the neutralization of cadmium toxicity by transferrin. Phys Chem Chem Phys 18:3536–3544.  https://doi.org/10.1039/c5cp06100h CrossRefPubMedGoogle Scholar
  172. Wang X et al (2018) Physiological functions of ferroportin in the regulation of renal iron recycling and ischemic acute kidney injury. Am J Physiol Renal Physiol 315:F1042–F1057.  https://doi.org/10.1152/ajprenal.00072.2018 CrossRefPubMedGoogle Scholar
  173. Wennemuth G, Westenbroek RE, Xu T, Hille B, Babcock DF (2000) CaV2.2 and CaV2.3 (N- and R-type) Ca2+ channels in depolarization-evoked entry of Ca2+ into mouse sperm. J Biol Chem 275:21210–21217.  https://doi.org/10.1074/jbc.M002068200 CrossRefPubMedGoogle Scholar
  174. Wolff NA, Abouhamed M, Verroust PJ, Thévenod F (2006) Megalin-dependent internalization of cadmium-metallothionein and cytotoxicity in cultured renal proximal tubule cells. J Pharmacol Exp Ther 318:782–791.  https://doi.org/10.1124/jpet.106.102574 CrossRefPubMedGoogle Scholar
  175. Wolff NA, Liu W, Fenton RA, Lee WK, Thévenod F, Smith CP (2011) Ferroportin 1 is expressed basolaterally in rat kidney proximal tubule cells and iron excess increases its membrane trafficking. J Cell Mol Med 15:209–219.  https://doi.org/10.1111/j.1582-4934.2009.00985.x CrossRefPubMedGoogle Scholar
  176. Wolff NA, Ghio AJ, Garrick LM, Garrick MD, Zhao L, Fenton RA, Thévenod F (2014) Evidence for mitochondrial localization of divalent metal transporter 1 (DMT1). FASEB J 28:2134–2145.  https://doi.org/10.1096/fj.13-240564 CrossRefPubMedGoogle Scholar
  177. Wolff NA, Garrick MD, Zhao L, Garrick LM, Ghio AJ, Thevenod F (2018) A role for divalent metal transporter (DMT1) in mitochondrial uptake of iron and manganese. Sci Rep 8:211.  https://doi.org/10.1038/s41598-017-18584-4 CrossRefPubMedPubMedCentralGoogle Scholar
  178. Yang WS, Stockwell BR (2016) Ferroptosis: death by lipid peroxidation. Trends Cell Biol 26:165–176.  https://doi.org/10.1016/j.tcb.2015.10.014 CrossRefPubMedGoogle Scholar
  179. Yang XF, Yang YN (1997) Protective effects of calcium antagonists on cadmium-induced toxicity in rats Biomedical and environmental sciences: BES 10:402–407PubMedGoogle Scholar
  180. Yang H, Guo D, Obianom ON, Su T, Polli JE, Shu Y (2017) Multidrug and toxin extrusion proteins mediate cellular transport of cadmium. Toxicol Appl Pharmacol 314:55–62.  https://doi.org/10.1016/j.taap.2016.11.007 CrossRefPubMedGoogle Scholar
  181. Yeung PS, Yamashita M, Prakriya M (2017) Pore opening mechanism of CRAC channels. Cell Calcium 63:14–19.  https://doi.org/10.1016/j.ceca.2016.12.006 CrossRefPubMedGoogle Scholar
  182. Yoshida M, Ohta H, Yamauchi Y, Seki Y, Sagi M, Yamazaki K, Sumi Y (1998) Age-dependent changes in metallothionein levels in liver and kidney of the Japanese. Biol Trace Elem Res 63:167–175CrossRefPubMedGoogle Scholar
  183. Yunker AM, McEnery MW (2003) Low-voltage-activated (“T-Type”) calcium channels in review. J Bioenerg Biomembr 35:533–575CrossRefPubMedGoogle Scholar
  184. Zalups RK, Ahmad S (2003) Molecular handling of cadmium in transporting epithelia. Toxicol Appl Pharmacol 186:163–188CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Physiology, Pathophysiology & Toxicology and ZBAF (Centre for Biomedical Education and Research), Faculty of Health, School of MedicineWitten/Herdecke UniversityWittenGermany

Personalised recommendations