pp 1–21 | Cite as

Channels, transporters and receptors for cadmium and cadmium complexes in eukaryotic cells: myths and facts

  • Frank ThévenodEmail author
  • Johannes Fels
  • Wing-Kee Lee
  • Ralf Zarbock


Cadmium (Cd2+) is a toxic and non-essential divalent metal ion in eukaryotic cells. Cells can only be targeted by Cd2+ if it hijacks physiological high-affinity entry pathways, which transport essential divalent metal ions in a process termed “ionic and molecular mimicry”. Hence, “free” Cd2+ ions and Cd2+ complexed with small organic molecules are transported across cellular membranes via ion channels, carriers and ATP hydrolyzing pumps, whereas receptor-mediated endocytosis (RME) internalizes Cd2+-protein complexes. Only Cd2+ transport pathways validated by stringent methodology, namely electrophysiology, 109Cd2+ tracer studies, inductively coupled plasma mass spectrometry, atomic absorption spectroscopy, Cd2+-sensitive fluorescent dyes, or specific ligand binding and internalization assays for RME are reviewed whereas indirect correlative studies are excluded. At toxicologically relevant concentrations in the submicromolar range, Cd2+ permeates voltage-dependent Ca2+ channels (“T-type” CaV3.1, CatSper), transient receptor potential (TRP) channels (TRPA1, TRPV5/6, TRPML1), solute carriers (SLCs) (DMT1/SLC11A2, ZIP8/SLC39A8, ZIP14/SLC39A14), amino acid/cystine transporters (SLC7A9/SLC3A1, SLC7A9/SLC7A13), and Cd2+-protein complexes are endocytosed by the lipocalin-2/NGAL receptor SLC22A17. Cd2+ transport via the mitochondrial Ca2+ uniporter, ATPases ABCC1/2/5 and transferrin receptor 1 is likely but requires further evidence. Cd2+ flux occurs through the influx carrier OCT2/SLC22A2, efflux MATE proteins SLC47A1/A2, the efflux ATPase ABCB1, and RME of Cd2+-metallothionein by the receptor megalin (low density lipoprotein receptor-related protein 2, LRP2):cubilin albeit at high concentrations thus questioning their relevance in Cd2+ loading. Which Cd2+-protein complexes are internalized by megalin:cubilin in vivo still needs to be determined. A stringent conservative and reductionist approach is mandatory to verify relevance of transport pathways for Cd2+ toxicity and to overcome dissemination of unsubstantiated conjectures.


Cadmium toxicity Ca2+ channels Solute carriers ABC transporters Lipocalin-2 receptor Megalin 



Research in the laboratory was supported by the DFG, BMBF (01DN16039), the University of Witten/Herdecke and ZBAF. The authors thank Dr. Natascha A. Wolff (University of Witten/Herdecke) for valuable discussions.


  1. Abergel RJ, Clifton MC, Pizarro JC, Warner JA, Shuh DK, Strong RK, Raymond KN (2008) The siderocalin/enterobactin interaction: a link between mammalian immunity and bacterial iron transport. J Am Chem Soc 130:11524–11534. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Abouhamed M et al (2006) Divalent metal transporter 1 in the kidney proximal tubule is expressed in late endosomes/lysosomal membranes: implications for renal handling of protein–metal complexes. Am J Physiol Renal Physiol 290:F1525–F1533. CrossRefPubMedGoogle Scholar
  3. Abouhamed M, Wolff NA, Lee WK, Smith CP, Thévenod F (2007) Knockdown of endosomal/lysosomal divalent metal transporter 1 by RNA interference prevents cadmium-metallothionein-1 cytotoxicity in renal proximal tubule cells. Am J Physiol Renal Physiol 293:F705–F712. CrossRefPubMedGoogle Scholar
  4. Adiele RC, Stevens D, Kamunde C (2010) Reciprocal enhancement of uptake and toxicity of cadmium and calcium in rainbow trout (Oncorhynchus mykiss) liver mitochondria. Aquat Toxicol 96:319–327. CrossRefPubMedGoogle Scholar
  5. Adiele RC, Stevens D, Kamunde C (2012) Features of cadmium and calcium uptake and toxicity in rainbow trout (Oncorhynchus mykiss) mitochondria. Toxicol In Vitro 26:164–173. CrossRefPubMedGoogle Scholar
  6. Akintola DF, Sampson B, Fleck A (1995) Development of an enzyme-linked immunosorbent assay for human metallothionein-1 in plasma and urine. J Lab Clin Med 126:119–127PubMedGoogle Scholar
  7. Ballatori N, Krance SM, Marchan R, Hammond CL (2009) Plasma membrane glutathione transporters and their roles in cell physiology and pathophysiology. Mol Aspects Med 30:13–28. CrossRefPubMedGoogle Scholar
  8. Bao G et al (2010) Iron traffics in circulation bound to a siderocalin (Ngal)-catechol complex. Nat Chem Biol 6:602–609. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Barbier O, Jacquillet G, Tauc M, Poujeol P, Cougnon M (2004) Acute study of interaction among cadmium, calcium, and zinc transport along the rat nephron in vivo. Am J Physiol Renal Physiol 287:F1067–F1075. CrossRefPubMedGoogle Scholar
  10. Bennett KM, Liu J, Hoelting C, Stoll J (2011) Expression and analysis of two novel rat organic cation transporter homologs, SLC22A17 and SLC22A23. Mol Cell Biochem 352:143–154. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Beyer EC, Berthoud VM (2017) Gap junction structure: unraveled, but not fully revealed. F1000 Res 6:568. CrossRefGoogle Scholar
  12. Beyersmann D, Hechtenberg S (1997) Cadmium, gene regulation, and cellular signalling in mammalian cells. Toxicol Appl Pharmacol 144:247–261. CrossRefPubMedGoogle Scholar
  13. Bolignano D, Donato V, Lacquaniti A, Fazio MR, Bono C, Coppolino G, Buemi M (2010) Neutrophil gelatinase-associated lipocalin (NGAL) in human neoplasias: a new protein enters the scene. Cancer Lett 288:10–16. CrossRefPubMedGoogle Scholar
  14. Borregaard N, Cowland JB (2006) Neutrophil gelatinase-associated lipocalin, a siderophore-binding eukaryotic protein. Biometals 19:211–215. CrossRefPubMedGoogle Scholar
  15. Bouron A, Kiselyov K, Oberwinkler J (2015) Permeation, regulation and control of expression of TRP channels by trace metal ions. Pflugers Arch 467:1143–1164. CrossRefPubMedGoogle Scholar
  16. Bressler JP, Olivi L, Cheong JH, Kim Y, Bannona D (2004) Divalent metal transporter 1 in lead and cadmium transport. Ann N Y Acad Sci 1012:142–152CrossRefPubMedGoogle Scholar
  17. Bruggeman IM, Temmink JH, van Bladeren PJ (1992) Effect of glutathione and cysteine on apical and basolateral uptake and toxicity of CdCl(2) in kidney cells (LLC-PK(1)). Toxicol In Vitro 6:195–200CrossRefPubMedGoogle Scholar
  18. Bystrom LM, Guzman ML, Rivella S (2014) Iron and reactive oxygen species: friends or foes of cancer cells? Antioxid Redox Signal 20:1917–1924. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cai X, Clapham DE (2008) Evolutionary genomics reveals lineage-specific gene loss and rapid evolution of a sperm-specific ion channel complex: CatSpers and CatSperbeta. PLoS ONE 3:e3569. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Canonne-Hergaux F, Gros P (2002) Expression of the iron transporter DMT1 in kidney from normal and anemic mk mice. Kidney Int 62:147–156CrossRefPubMedGoogle Scholar
  21. Carriere P, Mantha M, Champagne-Paradis S, Jumarie C (2011) Characterization of basolateral-to-apical transepithelial transport of cadmium in intestinal TC7 cell monolayers. Biometals 24:857–874. CrossRefPubMedGoogle Scholar
  22. Cataldi M, Perez-Reyes E, Tsien RW (2002) Differences in apparent pore sizes of low and high voltage-activated Ca2+ channels. J Biol Chem 277:45969–45976. CrossRefPubMedGoogle Scholar
  23. Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555. CrossRefPubMedGoogle Scholar
  24. Cens T, Rousset M, Kajava A, Charnet P (2007) Molecular determinant for specific Ca/Ba selectivity profiles of low and high threshold Ca2+ channels. J Gen Physiol 130:415–425. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Chasteen DN (1977) Human serotransferrin: structure and function. Coord Chem Rev 22:1–36CrossRefGoogle Scholar
  26. Christensen EI, Birn H (2002) Megalin and cubilin: multifunctional endocytic receptors. Nat Rev Mol Cell Biol 3:256–266. CrossRefPubMedGoogle Scholar
  27. Christensen EI, Birn H, Storm T, Weyer K, Nielsen R (2012) Endocytic receptors in the renal proximal tubule. Physiology (Bethesda) 27:223–236. CrossRefGoogle Scholar
  28. Ciarimboli G et al (2010) Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions. Am J Pathol 176:1169–1180. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Clarkson TW (1993) Molecular and ionic mimicry of toxic metals. Annu Rev Pharmacol Toxicol 33:545–571CrossRefPubMedGoogle Scholar
  30. Coffey R, Ganz T (2017) Iron homeostasis: an anthropocentric perspective. J Biol Chem 292:12727–12734. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Cole SP (2014) Targeting multidrug resistance protein 1 (MRP1, ABCC1): past, present, and future. Annu Rev Pharmacol Toxicol 54:95–117. CrossRefPubMedGoogle Scholar
  32. Cornelis R et al (1996) Sample collection guidelines for trace elements in blood and urine. IUPAC Commission of Toxicology. J Trace Elem Med Biol 10:103–127CrossRefPubMedGoogle Scholar
  33. De Smet H, Blust R, Moens L (2001) Cadmium-binding to transferrin in the plasma of the common carp Cyprinus carpio. Comp Biochem Physiol C: Toxicol Pharmacol 128:45–53Google Scholar
  34. Dean M, Allikmets R (2001) Complete characterization of the human ABC gene family. J Bioenerg Biomembr 33:475–479CrossRefPubMedGoogle Scholar
  35. Deshpande CN et al (2018) Calcium is an essential cofactor for metal efflux by the ferroportin transporter family. Nat Commun 9:3075. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Devireddy LR, Teodoro JG, Richard FA, Green MR (2001) Induction of apoptosis by a secreted lipocalin that is transcriptionally regulated by IL-3 deprivation. Science 293:829–834. CrossRefPubMedGoogle Scholar
  37. Devireddy LR, Gazin C, Zhu X, Green MR (2005) A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell 123:1293–1305CrossRefPubMedGoogle Scholar
  38. Devireddy LR, Hart DO, Goetz DH, Green MR (2010) A mammalian siderophore synthesized by an enzyme with a bacterial homolog involved in enterobactin production. Cell 141:1006–1017. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Di Paola S, Scotto-Rosato A, Medina DL (2018) TRPML1: the Ca((2 +))retaker of the lysosome. Cell Calcium 69:112–121. CrossRefPubMedGoogle Scholar
  40. Dickson LE, Wagner MC, Sandoval RM, Molitoris BA (2014) The proximal tubule and albuminuria: really! J Am Soc Nephrol 25:443–453. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Dong XP, Cheng X, Mills E, Delling M, Wang F, Kurz T, Xu H (2008) The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature 455:992–996. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Dong XP, Wang X, Xu H (2010) TRP channels of intracellular membranes. J Neurochem 113:313–328. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Donovan A et al (2000) Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403:776–781. CrossRefPubMedGoogle Scholar
  44. Donovan A, Lima CA, Pinkus JL, Pinkus GS, Zon LI, Robine S, Andrews NC (2005) The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab 1:191–200CrossRefPubMedGoogle Scholar
  45. Dorta DJ et al (2003) A proposed sequence of events for cadmium-induced mitochondrial impairment. J Inorg Biochem 97:251–257CrossRefPubMedGoogle Scholar
  46. Drakesmith H, Nemeth E, Ganz T (2015) Ironing out ferroportin. Cell Metab 22:777–787. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Dudev T, Lim C (2012) Why voltage-gated Ca2+ and bacterial Na+ channels with the same EEEE motif in their selectivity filters confer opposite metal selectivity. Phys Chem Chem Phys 14:12451–12456. CrossRefPubMedGoogle Scholar
  48. Eakin CM, Knight JD, Morgan CJ, Gelfand MA, Miranker AD (2002) Formation of a copper specific binding site in non-native states of beta-2-microglobulin. Biochemistry 41:10646–10656CrossRefPubMedGoogle Scholar
  49. Elinder CG, Friberg L, Lind B, Jawaid M (1983) Lead and cadmium levels in blood samples from the general population of Sweden. Environ Res 30:233–253CrossRefPubMedGoogle Scholar
  50. Erfurt C, Roussa E, Thévenod F (2003) Apoptosis by Cd2+ or CdMT in proximal tubule cells: different uptake routes and permissive role of endo/lysosomal CdMT uptake. Am J Physiol Cell Physiol 285:C1367–C1376CrossRefPubMedGoogle Scholar
  51. Fiori MC, Reuss L, Cuello LG, Altenberg GA (2014) Functional analysis and regulation of purified connexin hemichannels Frontiers in physiology 5:71. CrossRefPubMedGoogle Scholar
  52. Flower DR (1996) The lipocalin protein family: structure and function. Biochem J 318(Pt 1):1–14CrossRefPubMedPubMedCentralGoogle Scholar
  53. Fotiadis D, Kanai Y, Palacin M (2013) The SLC3 and SLC7 families of amino acid transporters. Mol Aspects Med 34:139–158. CrossRefPubMedGoogle Scholar
  54. Frazer DM, Anderson GJ (2014) The regulation of iron transport. BioFactors 40:206–214. CrossRefPubMedGoogle Scholar
  55. Freisinger E, Vasak M (2013) Cadmium in metallothioneins. Met Ions Life Sci 11:339–371. CrossRefPubMedGoogle Scholar
  56. Fujishiro H, Kubota K, Inoue D, Inoue A, Yanagiya T, Enomoto S, Himeno S (2011) Cross-resistance of cadmium-resistant cells to manganese is associated with reduced accumulation of both cadmium and manganese. Toxicology 280:118–125. CrossRefPubMedGoogle Scholar
  57. Gadsby DC, Vergani P, Csanady L (2006) The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature 440:477–483. CrossRefPubMedPubMedCentralGoogle Scholar
  58. Galaske RG, Van Liew JB, Feld LG (1979) Filtration and reabsorption of endogenous low-molecular-weight protein in the rat kidney. Kidney Int 16:394–403CrossRefPubMedGoogle Scholar
  59. Garrett SH, Sens MA, Todd JH, Somji S, Sens DA (1999) Expression of MT-3 protein in the human kidney. Toxicol Lett 105:207–214CrossRefPubMedGoogle Scholar
  60. Garza-Lopez E, Chavez JC, Santana-Calvo C, Lopez-Gonzalez I, Nishigaki T (2016) Cd(2+) sensitivity and permeability of a low voltage-activated Ca(2+) channel with CatSper-like selectivity filter. Cell Calcium 60:41–50. CrossRefPubMedGoogle Scholar
  61. Girijashanker K et al (2008) Slc39a14 gene encodes ZIP14, a metal/bicarbonate symporter: similarities to the ZIP8 transporter. Mol Pharmacol 73:1413–1423. CrossRefPubMedPubMedCentralGoogle Scholar
  62. Goumakos W, Laussac JP, Sarkar B (1991) Binding of cadmium(II) and zinc(II) to human and dog serum albumins: an equilibrium dialysis and 113Cd-NMR study. Biochem Cell Biol 69:809–820CrossRefPubMedGoogle Scholar
  63. Gunshin H et al (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–488. CrossRefPubMedGoogle Scholar
  64. Harris WR, Madsen LJ (1988) Equilibrium studies on the binding of cadmium(II) to human serum transferrin. Biochemistry 27:284–288CrossRefPubMedGoogle Scholar
  65. He L, Girijashanker K, Dalton TP, Reed J, Li H, Soleimani M, Nebert DW (2006) ZIP8, member of the solute-carrier-39 (SLC39) metal-transporter family: characterization of transporter properties. Mol Pharmacol 70:171–180. CrossRefPubMedGoogle Scholar
  66. Hirning LD, Fox AP, McCleskey EW, Olivera BM, Thayer SA, Miller RJ, Tsien RW (1988) Dominant role of N-type Ca2+ channels in evoked release of norepinephrine from sympathetic neurons. Science 239:57–61CrossRefPubMedGoogle Scholar
  67. Hoch E, Lin W, Chai J, Hershfinkel M, Fu D, Sekler I (2012) Histidine pairing at the metal transport site of mammalian ZnT transporters controls Zn2+ over Cd2+ selectivity. Proc Natl Acad Sci USA 109:7202–7207. CrossRefPubMedGoogle Scholar
  68. Hvidberg V, Jacobsen C, Strong RK, Cowland JB, Moestrup SK, Borregaard N (2005) The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake. FEBS Lett 579:773–777. CrossRefPubMedGoogle Scholar
  69. Illing AC, Shawki A, Cunningham CL, Mackenzie B (2012) Substrate profile and metal-ion selectivity of human divalent metal-ion transporter-1. J Biol Chem 287:30485–30496. CrossRefPubMedPubMedCentralGoogle Scholar
  70. Jarup L, Akesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208. CrossRefPubMedGoogle Scholar
  71. Jenkitkasemwong S, Wang CY, Mackenzie B, Knutson MD (2012) Physiologic implications of metal-ion transport by ZIP14 and ZIP8. Biometals 25:643–655. CrossRefPubMedPubMedCentralGoogle Scholar
  72. Jeong SH, Habeebu SS, Klaassen CD (2000) Cadmium decreases gap junctional intercellular communication in mouse liver. Toxicol Sci 57:156–166CrossRefPubMedGoogle Scholar
  73. Jorge-Nebert LF, Galvez-Peralta M, Landero Figueroa J, Somarathna M, Hojyo S, Fukada T, Nebert DW (2015) Comparing gene expression during cadmium uptake and distribution: untreated versus oral Cd-treated wild-type and ZIP14 knockout mice. Toxicol Sci 143:26–35. CrossRefPubMedGoogle Scholar
  74. Kambe T, Tsuji T, Hashimoto A, Itsumura N (2015) The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol Rev 95:749–784. CrossRefPubMedGoogle Scholar
  75. Kamer KJ, Mootha VK (2015) The molecular era of the mitochondrial calcium uniporter. Nat Rev Mol Cell Biol 16:545–553. CrossRefPubMedGoogle Scholar
  76. Kimura O, Endo T, Hotta Y, Sakata M (2005) Effects of P-glycoprotein inhibitors on transepithelial transport of cadmium in cultured renal epithelial cells, LLC-PK1 and LLC-GA5-COL 150. Toxicology 208:123–132. CrossRefPubMedGoogle Scholar
  77. Kippler M, Goessler W, Nermell B, Ekstrom EC, Lonnerdal B, El Arifeen S, Vahter M (2009) Factors influencing intestinal cadmium uptake in pregnant Bangladeshi women—a prospective cohort study. Environ Res 109:914–921. CrossRefPubMedGoogle Scholar
  78. Kjeldsen L, Johnsen AH, Sengelov H, Borregaard N (1993) Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem 268:10425–10432PubMedGoogle Scholar
  79. Kjeldsen L, Cowland JB, Borregaard N (2000) Human neutrophil gelatinase-associated lipocalin and homologous proteins in rat and mouse. Biochim Biophys Acta 1482:272–283CrossRefPubMedGoogle Scholar
  80. Klassen RB et al (2004) Megalin mediates renal uptake of heavy metal metallothionein complexes. Am J Physiol Renal Physiol 287:F393–F403. CrossRefPubMedGoogle Scholar
  81. Koepsell H (2013) The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Aspects Med 34:413–435. CrossRefPubMedGoogle Scholar
  82. Koepsell H, Schmitt BM, Gorboulev V (2003) Organic cation transporters. Rev Physiol Biochem Pharmacol 150:36–90CrossRefPubMedGoogle Scholar
  83. Kogan I et al (2003) CFTR directly mediates nucleotide-regulated glutathione flux. EMBO J 22:1981–1989. CrossRefPubMedPubMedCentralGoogle Scholar
  84. Koike A, Sou J, Ohishi A, Nishida K, Nagasawa K (2017) Inhibitory effect of divalent metal cations on zinc uptake via mouse Zrt-/Irt-like protein 8 (ZIP8). Life Sci 173:80–85. CrossRefPubMedGoogle Scholar
  85. Kovacs G, Danko T, Bergeron MJ, Balazs B, Suzuki Y, Zsembery A, Hediger MA (2011) Heavy metal cations permeate the TRPV6 epithelial cation channel. Cell Calcium 49:43–55. CrossRefPubMedGoogle Scholar
  86. Kovacs G, Montalbetti N, Franz MC, Graeter S, Simonin A, Hediger MA (2013) Human TRPV5 and TRPV6: key players in cadmium and zinc toxicity. Cell Calcium 54:276–286. CrossRefPubMedGoogle Scholar
  87. Kruh GD, Belinsky MG (2003) The MRP family of drug efflux pumps. Oncogene 22:7537–7552. CrossRefPubMedGoogle Scholar
  88. Lacinova L, Klugbauer N, Hofmann F (2000) Regulation of the calcium channel alpha(1G) subunit by divalent cations and organic blockers. Neuropharmacology 39:1254–1266CrossRefPubMedGoogle Scholar
  89. Langelueddecke C, Roussa E, Fenton RA, Wolff NA, Lee WK, Thévenod F (2012) Lipocalin-2 (24p3/neutrophil gelatinase-associated lipocalin (NGAL)) receptor is expressed in distal nephron and mediates protein endocytosis. J Biol Chem 287:159–169. CrossRefPubMedGoogle Scholar
  90. Langelueddecke C, Roussa E, Fenton RA, Thévenod F (2013) Expression and function of the lipocalin-2 (24p3/NGAL) receptor in rodent and human intestinal epithelia. PLoS ONE 8:e71586. CrossRefPubMedPubMedCentralGoogle Scholar
  91. Langelueddecke C, Lee WK, Thévenod F (2014) Differential transcytosis and toxicity of the hNGAL receptor ligands cadmium-metallothionein and cadmium-phytochelatin in colon-like Caco-2 cells: implications for in vivo cadmium toxicity. Toxicol Lett 226:228–235. CrossRefPubMedGoogle Scholar
  92. Lee WK, Bork U, Gholamrezaei F, Thévenod F (2005) Cd(2+)-induced cytochrome c release in apoptotic proximal tubule cells: role of mitochondrial permeability transition pore and Ca(2+) uniporter. Am J Physiol Renal Physiol 288:F27–F39. CrossRefPubMedGoogle Scholar
  93. Lee WK, Torchalski B, Kohistani N, Thévenod F (2011) ABCB1 protects kidney proximal tubule cells against cadmium-induced apoptosis: roles of cadmium and ceramide transport. Toxicol Sci 121:343–356. CrossRefPubMedGoogle Scholar
  94. Lee WK et al (2017) Initial autophagic protection switches to disruption of autophagic flux by lysosomal instability during cadmium stress accrual in renal NRK-52E cells. Arch Toxicol 91:3225–3245. CrossRefPubMedGoogle Scholar
  95. L’Hoste S et al (2009) CFTR mediates cadmium-induced apoptosis through modulation of ROS level in mouse proximal tubule cells. Free Radic Biol Med 46:1017–1031. CrossRefPubMedGoogle Scholar
  96. Li ZS, Lu YP, Zhen RG, Szczypka M, Thiele DJ, Rea PA (1997) A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis(glutathionato)cadmium. Proc Natl Acad Sci USA 94:42–47CrossRefPubMedGoogle Scholar
  97. Li M, Jiang J, Yue L (2006) Functional characterization of homo- and heteromeric channel kinases TRPM6 and TRPM7. J Gen Physiol 127:525–537. CrossRefPubMedPubMedCentralGoogle Scholar
  98. Liu J, Habeebu SS, Liu Y, Klaassen CD (1998a) Acute CdMT injection is not a good model to study chronic Cd nephropathy: comparison of chronic CdCl2 and CdMT exposure with acute CdMT injection in rats. Toxicol Appl Pharmacol 153:48–58. CrossRefPubMedGoogle Scholar
  99. Liu J, Liu Y, Habeebu SS, Klaassen CD (1998b) Susceptibility of MT-null mice to chronic CdCl2-induced nephrotoxicity indicates that renal injury is not mediated by the CdMT complex. Toxicol Sci 46:197–203. CrossRefPubMedGoogle Scholar
  100. Liu J, Goyer RA, Waalkes MP (2008a) Toxic effects of metals. In: Klaasen CD (ed) Casarett & Doull’s toxicology: the basic science of poisons, 7th edn. McGraw -Hill, New York, pp 931–979Google Scholar
  101. Liu Z et al (2008b) Cd2+ versus Zn2+ uptake by the ZIP8 HCO3-dependent symporter: kinetics, electrogenicity and trafficking. Biochem Biophys Res Commun 365:814–820. CrossRefPubMedGoogle Scholar
  102. Long Y, Li Q, Li J, Cui Z (2011a) Molecular analysis, developmental function and heavy metal-induced expression of ABCC5 in zebrafish. Comp Biochem Physiol B 158:46–55. CrossRefPubMedGoogle Scholar
  103. Long Y, Li Q, Zhong S, Wang Y, Cui Z (2011b) Molecular characterization and functions of zebrafish ABCC2 in cellular efflux of heavy metals. Comp Biochem Physiol C 153:381–391. CrossRefGoogle Scholar
  104. Lopin KV, Thévenod F, Page JC, Jones SW (2012) Cd(2)(+) block and permeation of CaV3.1 (alpha1G) T-type calcium channels: candidate mechanism for Cd(2)(+) influx. Mol Pharmacol 82:1183–1193. CrossRefPubMedGoogle Scholar
  105. Madsen KM, Harris RH, Tisher CC (1982) Uptake and intracellular distribution of ferritin in the rat distal convoluted tubule. Kidney Int 21:354–361CrossRefPubMedGoogle Scholar
  106. Marcus Y (1988) Ionic radii in aqueous solutions Chem Rev 88:1475–1498Google Scholar
  107. Maret W, Moulis JM (2013) The bioinorganic chemistry of cadmium in the context of its toxicity. Metal Ions Life Sci 11:1–29. CrossRefGoogle Scholar
  108. Martineau C, Abed E, Médina G, Jomphe LA, Mantha M, Jumarie C, Moreau R (2010) Involvement of transient receptor potential melastatin-related 7 (TRPM7) channels in cadmium uptake and cytotoxicity in MC3T3-E1 osteoblasts. Toxicol Lett 199(3):357–363CrossRefPubMedGoogle Scholar
  109. McAleer MA, Breen MA, White NL, Matthews N (1999) pABC11 (also known as MOAT-C and MRP5), a member of the ABC family of proteins, has anion transporter activity but does not confer multidrug resistance when overexpressed in human embryonic kidney 293 cells. J Biol Chem 274:23541–23548CrossRefPubMedGoogle Scholar
  110. Milnerowicz H, Bizon A (2010) Determination of metallothionein in biological fluids using enzyme-linked immunoassay with commercial antibody. Acta Biochim Pol 57:99–104PubMedGoogle Scholar
  111. Mitchell CJ, Shawki A, Ganz T, Nemeth E, Mackenzie B (2014) Functional properties of human ferroportin, a cellular iron exporter reactive also with cobalt and zinc. Am J Physiol Cell Physiol 306:C450–C459. CrossRefPubMedGoogle Scholar
  112. Miura S, Takahashi K, Imagawa T, Uchida K, Saito S, Tominaga M, Ohta T (2013) Involvement of TRPA1 activation in acute pain induced by cadmium in mice. Mol Pain 9:7. CrossRefPubMedPubMedCentralGoogle Scholar
  113. Montell C (2005) The TRP superfamily of cation channels. Sci STKE. CrossRefPubMedGoogle Scholar
  114. Mulier M, Vriens J, Voets T (2017) TRP channel pores and local calcium signals. Cell Calcium 66:19–24. CrossRefPubMedGoogle Scholar
  115. Nagamine T et al (2007) Analysis of tissue cadmium distribution in chronic cadmium-exposed mice using in-air micro-PIXE. Biol Trace Elem Res 117:115–126. CrossRefPubMedGoogle Scholar
  116. Nagamori S et al (2016) Novel cystine transporter in renal proximal tubule identified as a missing partner of cystinuria-related plasma membrane protein rBAT/SLC3A1. Proc Natl Acad Sci USA 113:775–780. CrossRefPubMedGoogle Scholar
  117. Nemeth E et al (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306:2090–2093. CrossRefPubMedGoogle Scholar
  118. Nemmiche S, Guiraud P (2016) Cadmium-induced oxidative damages in the human BJAB cells correlate with changes in intracellular trace elements levels and zinc transporters expression. Toxicol In Vitro 37:169–177. CrossRefPubMedGoogle Scholar
  119. Nies AT, Damme K, Kruck S, Schaeffeler E, Schwab M (2016) Structure and function of multidrug and toxin extrusion proteins (MATEs) and their relevance to drug therapy and personalized medicine. Arch Toxicol 90:1555–1584. CrossRefPubMedGoogle Scholar
  120. Nunez MT, Tapia V, Rojas A, Aguirre P, Gomez F, Nualart F (2010) Iron supply determines apical/basolateral membrane distribution of intestinal iron transporters DMT1 and ferroportin 1. Am J Physiol Cell Physiol 298:C477–C485. CrossRefPubMedGoogle Scholar
  121. Ohrvik H, Tyden E, Artursson P, Oskarsson A, Tallkvist J (2013) Cadmium transport in a model of neonatal intestinal cells correlates to MRP1 and not DMT1 or FPN1. ISRN Toxicol 2013:892364. CrossRefPubMedPubMedCentralGoogle Scholar
  122. Okazaki Y, Ma Y, Yeh M, Yin H, Li Z, Yeh KY, Glass J (2012) DMT1 (IRE) expression in intestinal and erythroid cells is regulated by peripheral benzodiazepine receptor-associated protein 7. Am J Physiol Gastrointest Liver Physiol 302:G1180–G1190. CrossRefPubMedPubMedCentralGoogle Scholar
  123. Okubo M, Yamada K, Hosoyamada M, Shibasaki T, Endou H (2003) Cadmium transport by human Nramp 2 expressed in Xenopus laevis oocytes. Toxicol Appl Pharmacol 187:162–167CrossRefPubMedGoogle Scholar
  124. Paragas N et al (2011) The Ngal reporter mouse detects the response of the kidney to injury in real time. Nat Med 17:216–222. CrossRefPubMedPubMedCentralGoogle Scholar
  125. Parajuli LK, Nakajima C, Kulik A, Matsui K, Schneider T, Shigemoto R, Fukazawa Y (2012) Quantitative regional and ultrastructural localization of the Ca(v)2.3 subunit of R-type calcium channel in mouse brain. J Neurosci 32:13555–13567. CrossRefPubMedGoogle Scholar
  126. Perez-Reyes E (2003) Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 83:117–161. CrossRefPubMedGoogle Scholar
  127. Prakriya M, Lewis RS (2015) Store-operated calcium channels. Physiol Rev 95:1383–1436. CrossRefPubMedPubMedCentralGoogle Scholar
  128. Prozialeck WC et al (2016) Evaluation of cystatin C as an early biomarker of cadmium nephrotoxicity in the rat. Biometals 29:131–146. CrossRefPubMedGoogle Scholar
  129. Richardson DR (2005) 24p3 and its receptor: dawn of a new iron age? Cell 123:1175–1177CrossRefPubMedGoogle Scholar
  130. Rizzuto R, De Stefani D, Raffaello A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13:566–578. CrossRefPubMedGoogle Scholar
  131. Rozanski GM, Nath AR, Adams ME, Stanley EF (2013) Low voltage-activated calcium channels gate transmitter release at the dorsal root ganglion sandwich synapse. J Physiol 591:5575–5583. CrossRefPubMedPubMedCentralGoogle Scholar
  132. Sabolic I, Ljubojevic M, Herak-Kramberger CM, Brown D (2002) Cd-MT causes endocytosis of brush-border transporters in rat renal proximal tubules. Am J Physiol Renal Physiol 283:F1389–F1402CrossRefPubMedGoogle Scholar
  133. Sabolic I, Breljak D, Skarica M, Herak-Kramberger CM (2010) Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs. Biometals 23:897–926. CrossRefPubMedGoogle Scholar
  134. Saddala MS, Kandimalla R, Adi PJ, Bhashyam SS, Asupatri UR (2017) Novel 1, 4-dihydropyridines for L-type calcium channel as antagonists for cadmium toxicity. Sci Rep 7:45211. CrossRefPubMedPubMedCentralGoogle Scholar
  135. Salmela SS, Vuori E, Huunan-Seppala A, Kilpio JO, Sumuvuori H (1983) Body burden of cadmium in man at low level of exposure. Sci Tot Environ 27:89–95CrossRefGoogle Scholar
  136. Santoyo-Sanchez MP, Pedraza-Chaverri J, Molina-Jijon E, Arreola-Mendoza L, Rodriguez-Munoz R, Barbier OC (2013) Impaired endocytosis in proximal tubule from subchronic exposure to cadmium involves angiotensin II type 1 and cubilin receptors. BMC Nephrol 14:211. CrossRefPubMedPubMedCentralGoogle Scholar
  137. Sather WA, McCleskey EW (2003) Permeation and selectivity in calcium channels. Annu Rev Physiol 65:133–159. CrossRefPubMedGoogle Scholar
  138. Schmidt-Ott KM, Mori K, Li JY, Kalandadze A, Cohen DJ, Devarajan P, Barasch J (2007) Dual action of neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol 18:407–413CrossRefPubMedGoogle Scholar
  139. Sharom FJ (2011) The P-glycoprotein multidrug transporter. Essays Biochem 50:161–178. CrossRefPubMedGoogle Scholar
  140. Shawki A, Knight PB, Maliken BD, Niespodzany EJ, Mackenzie B (2012) H(+)-coupled divalent metal-ion transporter-1: functional properties, physiological roles and therapeutics. Curr Topics Membr 70:169–214. CrossRefGoogle Scholar
  141. Shuba YM (2014) Models of calcium permeation through T-type channels. Pflugers Arch 466:635–644. CrossRefPubMedGoogle Scholar
  142. Smith CP, Thévenod F (2009) Iron transport and the kidney. Biochim Biophys Acta 1790:724–730. CrossRefPubMedGoogle Scholar
  143. Soodvilai S, Nantavishit J, Muanprasat C, Chatsudthipong V (2011) Renal organic cation transporters mediated cadmium-induced nephrotoxicity. Toxicol Lett 204:38–42. CrossRefPubMedGoogle Scholar
  144. Srigiridhar K, Nair KM (1998) Iron-deficient intestine is more susceptible to peroxidative damage during iron supplementation in rats. Free Radic Biol Med 25:660–665CrossRefPubMedGoogle Scholar
  145. Thévenod F (2003) Nephrotoxicity and the proximal tubule. Insights from cadmium. Nephron Physiol 93:p87–p93. CrossRefPubMedGoogle Scholar
  146. Thévenod F (2010) Catch me if you can! Novel aspects of cadmium transport in mammalian cells. Biometals 23:857–875. CrossRefPubMedGoogle Scholar
  147. Thévenod F (2018) Membrane transport proteins and receptors for cadmium and cadmium complexes. In: Thévenod F, Petering D, Templeton D, Lee W-K, Hartwig A (eds) Cadmium interaction with animal cells. Springer, Cham, pp 1–22CrossRefGoogle Scholar
  148. Thévenod F, Jones SW (1992) Cadmium block of calcium current in frog sympathetic neurons. Biophys J 63:162–168. CrossRefPubMedPubMedCentralGoogle Scholar
  149. Thévenod F, Lee WK (2013a) Cadmium and cellular signaling cascades: interactions between cell death and survival pathways. Arch Toxicol 87:1743–1786. CrossRefPubMedGoogle Scholar
  150. Thévenod F, Lee WK (2013b) Toxicology of cadmium and its damage to Mammalian organs. Metal Ions Life Sci 11:415–490. CrossRefGoogle Scholar
  151. Thévenod F, Wolff NA (2016) Iron transport in the kidney: implications for physiology and cadmium nephrotoxicity. Metallomics 8:17–42. CrossRefPubMedGoogle Scholar
  152. Thévenod F, Friedmann JM, Katsen AD, Hauser IA (2000) Up-regulation of multidrug resistance P-glycoprotein via nuclear factor-kappaB activation protects kidney proximal tubule cells from cadmium- and reactive oxygen species-induced apoptosis. J Biol Chem 275:1887–1896CrossRefPubMedGoogle Scholar
  153. Thévenod F et al (2013) Substrate- and cell contact-dependent inhibitor affinity of human organic cation transporter 2: studies with two classical organic cation substrates and the novel substrate Cd2+. Mol Pharm 10:3045–3056. CrossRefPubMedGoogle Scholar
  154. Thijssen S, Maringwa J, Faes C, Lambrichts I, Van Kerkhove E (2007) Chronic exposure of mice to environmentally relevant, low doses of cadmium leads to early renal damage, not predicted by blood or urine cadmium levels. Toxicology 229:145–156CrossRefPubMedGoogle Scholar
  155. Tian J, Hu J, Chen M, Yin H, Miao P, Bai P, Yin J (2017) The use of mrp1-deficient (Danio rerio) zebrafish embryos to investigate the role of Mrp1 in the toxicity of cadmium chloride and benzo[a]pyrene. Aquat Toxicol 186:123–133. CrossRefPubMedGoogle Scholar
  156. Tommasini R et al (1996) The human multidrug resistance-associated protein functionally complements the yeast cadmium resistance factor 1. Proc Natl Acad Sci USA 93:6743–6748CrossRefPubMedGoogle Scholar
  157. Torra M, To-Figueras J, Brunet M, Rodamilans M, Corbella J (1994) Total and metallothionein-bound cadmium in the liver and the kidney of a population in Barcelona (Spain). Bull Environ Contam Toxicol 53:509–515CrossRefPubMedGoogle Scholar
  158. Usai C, Barberis A, Moccagatta L, Marchetti C (1999) Pathways of cadmium influx in mammalian neurons. J Neurochem 72:2154–2161CrossRefPubMedGoogle Scholar
  159. Valiunas V, Cohen IS, Brink PR (2018) Defining the factors that affect solute permeation of gap junction channels Biochimica et biophysica acta. Biomembranes 1860:96–101. CrossRefPubMedGoogle Scholar
  160. van de Graaf SF, Hoenderop JG, Bindels RJ (2006) Regulation of TRPV5 and TRPV6 by associated proteins. Am J Physiol Renal Physiol 290:F1295–F1302. CrossRefPubMedGoogle Scholar
  161. van Goor MKC, Hoenderop JGJ, van der Wijst J (2017) TRP channels in calcium homeostasis: from hormonal control to structure-function relationship of TRPV5 and TRPV6. Biochim Biophys Acta 1864:883–893. CrossRefGoogle Scholar
  162. van Raaij S et al (2018) Tubular iron deposition and iron handling proteins in human healthy kidney and chronic kidney disease Scientific reports 8:9353. CrossRefPubMedGoogle Scholar
  163. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417. CrossRefPubMedPubMedCentralGoogle Scholar
  164. Vinken M, Ceelen L, Vanhaecke T, Rogiers V (2010) Inhibition of gap junctional intercellular communication by toxic metals. Chem Res Toxicol 23:1862–1867. CrossRefPubMedGoogle Scholar
  165. Voets T, Talavera K, Owsianik G, Nilius B (2005) Sensing with TRP channels Nat Chem Biol 1:85–92. CrossRefPubMedGoogle Scholar
  166. Wang Y, Fang J, Leonard SS, Rao KM (2004) Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radic Biol Med 36:1434–1443. CrossRefPubMedGoogle Scholar
  167. Wang B et al (2007) Enhanced cadmium-induced testicular necrosis and renal proximal tubule damage caused by gene-dose increase in a Slc39a8-transgenic mouse line. Am J Physiol Cell Physiol 292:C1523–C1535. CrossRefPubMedGoogle Scholar
  168. Wang L, Chen D, Wang H, Liu Z (2009) Effects of lead and/or cadmium on the expression of metallothionein in the kidney of rats. Biol Trace Elem Res 129:190–199. CrossRefPubMedGoogle Scholar
  169. Wang Y, Zalups RK, Barfuss DW (2010) Potential mechanisms involved in the absorptive transport of cadmium in isolated perfused rabbit renal proximal tubules. Toxicol Lett 193:61–68. CrossRefPubMedGoogle Scholar
  170. Wang CY, Jenkitkasemwong S, Duarte S, Sparkman BK, Shawki A, Mackenzie B, Knutson MD (2012) ZIP8 is an iron and zinc transporter whose cell-surface expression is up-regulated by cellular iron loading. J Biol Chem 287:34032–34043. CrossRefPubMedPubMedCentralGoogle Scholar
  171. Wang J, Wang J, Song W, Yang X, Zong W, Liu R (2016) Molecular mechanism investigation of the neutralization of cadmium toxicity by transferrin. Phys Chem Chem Phys 18:3536–3544. CrossRefPubMedGoogle Scholar
  172. Wang X et al (2018) Physiological functions of ferroportin in the regulation of renal iron recycling and ischemic acute kidney injury. Am J Physiol Renal Physiol 315:F1042–F1057. CrossRefPubMedGoogle Scholar
  173. Wennemuth G, Westenbroek RE, Xu T, Hille B, Babcock DF (2000) CaV2.2 and CaV2.3 (N- and R-type) Ca2+ channels in depolarization-evoked entry of Ca2+ into mouse sperm. J Biol Chem 275:21210–21217. CrossRefPubMedGoogle Scholar
  174. Wolff NA, Abouhamed M, Verroust PJ, Thévenod F (2006) Megalin-dependent internalization of cadmium-metallothionein and cytotoxicity in cultured renal proximal tubule cells. J Pharmacol Exp Ther 318:782–791. CrossRefPubMedGoogle Scholar
  175. Wolff NA, Liu W, Fenton RA, Lee WK, Thévenod F, Smith CP (2011) Ferroportin 1 is expressed basolaterally in rat kidney proximal tubule cells and iron excess increases its membrane trafficking. J Cell Mol Med 15:209–219. CrossRefPubMedGoogle Scholar
  176. Wolff NA, Ghio AJ, Garrick LM, Garrick MD, Zhao L, Fenton RA, Thévenod F (2014) Evidence for mitochondrial localization of divalent metal transporter 1 (DMT1). FASEB J 28:2134–2145. CrossRefPubMedGoogle Scholar
  177. Wolff NA, Garrick MD, Zhao L, Garrick LM, Ghio AJ, Thevenod F (2018) A role for divalent metal transporter (DMT1) in mitochondrial uptake of iron and manganese. Sci Rep 8:211. CrossRefPubMedPubMedCentralGoogle Scholar
  178. Yang WS, Stockwell BR (2016) Ferroptosis: death by lipid peroxidation. Trends Cell Biol 26:165–176. CrossRefPubMedGoogle Scholar
  179. Yang XF, Yang YN (1997) Protective effects of calcium antagonists on cadmium-induced toxicity in rats Biomedical and environmental sciences: BES 10:402–407PubMedGoogle Scholar
  180. Yang H, Guo D, Obianom ON, Su T, Polli JE, Shu Y (2017) Multidrug and toxin extrusion proteins mediate cellular transport of cadmium. Toxicol Appl Pharmacol 314:55–62. CrossRefPubMedGoogle Scholar
  181. Yeung PS, Yamashita M, Prakriya M (2017) Pore opening mechanism of CRAC channels. Cell Calcium 63:14–19. CrossRefPubMedGoogle Scholar
  182. Yoshida M, Ohta H, Yamauchi Y, Seki Y, Sagi M, Yamazaki K, Sumi Y (1998) Age-dependent changes in metallothionein levels in liver and kidney of the Japanese. Biol Trace Elem Res 63:167–175CrossRefPubMedGoogle Scholar
  183. Yunker AM, McEnery MW (2003) Low-voltage-activated (“T-Type”) calcium channels in review. J Bioenerg Biomembr 35:533–575CrossRefPubMedGoogle Scholar
  184. Zalups RK, Ahmad S (2003) Molecular handling of cadmium in transporting epithelia. Toxicol Appl Pharmacol 186:163–188CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Physiology, Pathophysiology & Toxicology and ZBAF (Centre for Biomedical Education and Research), Faculty of Health, School of MedicineWitten/Herdecke UniversityWittenGermany

Personalised recommendations