, Volume 32, Issue 1, pp 77–88 | Cite as

Algae induce siderophore biosynthesis in the freshwater bacterium Cupriavidus necator H16

  • Colette Kurth
  • Ina Wasmuth
  • Thomas Wichard
  • Georg Pohnert
  • Markus NettEmail author


Cupriachelin is a photoreactive lipopeptide siderophore produced by the freshwater bacterium Cupriavidus necator H16. In the presence of sunlight, the iron-loaded siderophore undergoes photolytic cleavage, thereby releasing solubilized iron into the environment. This iron is not only available to the siderophore producer, but also to the surrounding microbial community. In this study, the cupriachelin-based interaction between C. necator H16 and the freshwater diatom Navicula pelliculosa was investigated. A reporter strain of the bacterium was constructed to study differential expression levels of the cupriachelin biosynthesis gene cucJ in response to varying environmental conditions. Not only iron starvation, but also culture supernatants of N. pelliculosa were found to induce cupriachelin biosynthesis. The transcription factors involved in this differential gene expression were identified using DNA–protein pulldown assays. Besides the well-characterized ferric uptake regulator, a two-component system was found to tune the expression of cupriachelin biosynthesis genes in the presence of diatom supernatants.


Siderophore Cupriavidus necator Diatom Interaction Freshwater 



This project was supported by the Collaborative Research Center ChemBioSys (CRC1127 ChemBioSys) and funded by the Deutsche Forschungsgemeinschaft. We thank T. Kindel (Hans Knöll Institute Jena, Department for Molecular and Applied Microbiology) for MALDI-TOF/TOF measurements.

Supplementary material

10534_2018_159_MOESM1_ESM.pdf (469 kb)
Supplementary material 1 (PDF 469 kb)


  1. Amin SA, Green DH, Hart MC et al (2009a) Photolysis of iron-siderophore chelates promotes bacterial-algal mutualism. Proc Natl Acad Sci USA 106:17071–17076. CrossRefGoogle Scholar
  2. Amin SA, Green DH, Küpper FC, Carrano CJ (2009b) Vibrioferrin, an unusual marine siderophore: iron binding, photochemistry, and biological implications. Inorg Chem 48:11451–11458. CrossRefGoogle Scholar
  3. Amin SA, Parker MS, Armbrust EV (2012) Interactions between diatoms and bacteria. Microbiol Mol Biol Rev 76:667–684. CrossRefGoogle Scholar
  4. Andrews SC, Robinson AK, Rodríguez-Quiñones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237. CrossRefGoogle Scholar
  5. Barbeau K, Rue EL, Bruland KW, Butler A (2001) Photochemical cycling of iron in the surface ocean mediated by microbial iron(III)-binding ligands. Nature 413:409–413. CrossRefGoogle Scholar
  6. Barbeau K, Zhang G, Live DH, Butler A (2002) Petrobactin, a photoreactive siderophore produced by the oil-degrading marine bacterium Marinobacter hydrocarbonoclasticus. J Am Chem Soc 124:378–379. CrossRefGoogle Scholar
  7. Blackburn N, Fenchel T, Mitchell J (1998) Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria. Science 282:2254–2256. CrossRefGoogle Scholar
  8. Blain S, Quéguiner B, Armand L et al (2007) Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature 446:1070–1074. CrossRefGoogle Scholar
  9. Boiteau RM, Mende DR, Hawco NJ et al (2016) Siderophore-based microbial adaptations to iron scarcity across the eastern Pacific Ocean. Proc Natl Acad Sci USA 113:14237–14242. CrossRefGoogle Scholar
  10. Bruland KW, Rue EL (2001) Analytical methods for the determination of concentrations and speciation of iron. In: Turner DK, Hunter KA (eds) The biogeochemistry of seawater. Wiley, New YorkGoogle Scholar
  11. Butler A, Theisen RM (2010) Iron(III)–siderophore coordination chemistry: reactivity of marine siderophores. Coord Chem Rev 254:288–296. CrossRefGoogle Scholar
  12. Cartron ML, Maddocks S, Gillingham P et al (2006) Feo – transport of ferrous iron into bacteria. Biometals 19:143–157. CrossRefGoogle Scholar
  13. Croft MT, Lawrence AD, Raux-Deery E et al (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438:90–93. CrossRefGoogle Scholar
  14. de Lorenzo V, Wee S, Herrero M, Neilands JB (1987) Operator sequences of the aerobactin operon of plasmid ColV-K30 binding the ferric uptake regulation (fur) repressor. J Bacteriol 169:2624–2630. CrossRefGoogle Scholar
  15. Dean CR, Poole K (1993) Expression of the ferric enterobactin receptor (PfeA) of Pseudomonas aeruginosa: involvement of a two-component regulatory system. Mol Microbiol 8:1095–1103. CrossRefGoogle Scholar
  16. Delany I, Spohn G, Pacheco A-BF et al (2002) Autoregulation of Helicobacter pylori Fur revealed by functional analysis of the iron-binding site: autoregulation of H. pylori Fur protein. Mol Microbiol 46:1107–1122. CrossRefGoogle Scholar
  17. Dumas Z, Ross-Gillespie A, Kummerli R (2013) Switching between apparently redundant iron-uptake mechanisms benefits bacteria in changeable environments. Proc R Soc B Biol Sci 280:20131055. CrossRefGoogle Scholar
  18. Dyballa N, Metzger S (2009) Fast and sensitive colloidal Coomassie G-250 staining for proteins in polyacrylamide gels. J Vis Exp. Google Scholar
  19. Ferrero M, Farías ME, Siñeriz F (2004) Preliminary characterization of microbial communities in high altitude wetlands of northwestern Argentina by determining terminal restriction fragment length polymorphisms. Rev Latinoam Microbiol 46:72–80Google Scholar
  20. Fillat MF (2014) The FUR (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators. Arch Biochem Biophys 546:41–52. CrossRefGoogle Scholar
  21. Foster RA, Kuypers MMM, Vagner T et al (2011) Nitrogen fixation and transfer in open ocean diatom–cyanobacterial symbioses. ISME J 5:1484–1493. CrossRefGoogle Scholar
  22. Fukui T, Ohsawa K, Mifune J et al (2011) Evaluation of promoters for gene expression in polyhydroxyalkanoate-producing Cupriavidus necator H16. Appl Microbiol Biotechnol 89:1527–1536. CrossRefGoogle Scholar
  23. Griffith KL, Wolf RE (2002) Measuring β-galactosidase activity in bacteria: cell growth, permeabilization, and enzyme assays in 96-well arrays. Biochem Biophys Res Commun 290:397–402. CrossRefGoogle Scholar
  24. Hallegraeff GM (2010) Ocean climate change, phytoplankton community responses, and harmful algal blooms: a formidable predictive challenge. J Phycol 46:220–235. CrossRefGoogle Scholar
  25. Haynes K, Hofmann TA, Smith CJ et al (2007) Diatom-derived carbohydrates as factors affecting bacterial community composition in estuarine sediments. Appl Environ Microbiol 73:6112–6124. CrossRefGoogle Scholar
  26. Hermenau R, Ishida K, Hoffmann B et al (2018) Gramibactin—a bacterial siderophore with a diazeniumdiolate ligand system. Nat Chem Biol 14:841–843CrossRefGoogle Scholar
  27. Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637. CrossRefGoogle Scholar
  28. Homann VV, Sandy M, Tincu JA et al (2009) Loihichelins A − F, a suite of amphiphilic siderophores produced by the marine bacterium Halomonas LOB-5. J Nat Prod 72:884–888. CrossRefGoogle Scholar
  29. Ito Y, Butler A (2005) Structure of synechobactins, new siderophores of the marine cyanobacterium Synechococcus sp. PCC 7002. Limnol Oceanogr 50:1918–1923. CrossRefGoogle Scholar
  30. Jutras BL, Verma A, Stevenson B (2012) Identification of novel DNA-binding proteins using DNA-affinity chromatography/pull down. In: Coico R, McBride A, Quarles JM et al (eds) Current protocols in microbiology. Wiley, Hoboken, pp 1F.1.1–1F.1.13CrossRefGoogle Scholar
  31. Kohlmann Y (2015) Charakterisierung des Proteoms von Ralstonia eutropha H16 unter lithoautotrophen und anaeroben Bedingungen. Humboldt University of Berlin, BerlinGoogle Scholar
  32. Kouzuma A, Watanabe K (2015) Exploring the potential of algae/bacteria interactions. Curr Opin Biotechnol 33:125–129. CrossRefGoogle Scholar
  33. Kreutzer MF, Kage H, Nett M (2012) Structure and biosynthetic assembly of cupriachelin, a photoreactive siderophore from the bioplastic producer Cupriavidus necator H16. J Am Chem Soc 134:5415–5422. CrossRefGoogle Scholar
  34. Kümmerli R, Schiessl KT, Waldvogel T et al (2014) Habitat structure and the evolution of diffusible siderophores in bacteria. Ecol Lett 17:1536–1544. CrossRefGoogle Scholar
  35. Kurth C, Kage H, Nett M (2016a) Siderophores as molecular tools in medical and environmental applications. Org Biomol Chem 14:8212–8227. CrossRefGoogle Scholar
  36. Kurth C, Schieferdecker S, Athanasopoulou K et al (2016b) Variochelins, lipopeptide siderophores from Variovorax boronicumulans discovered by genome mining. J Nat Prod 79:865–872. CrossRefGoogle Scholar
  37. Liao CH, McCallus DE, Wells JM et al (1996) The repB gene required for production of extracellular enzymes and fluorescent siderophores in Pseudomonas viridiflava is an analog of the gacA gene of Pseudomonas syringae. Can J Microbiol 42:177–182CrossRefGoogle Scholar
  38. Livny J, Waldor MK (2007) Identification of small RNAs in diverse bacterial species. Curr Opin Microbiol 10:96–101. CrossRefGoogle Scholar
  39. Lowry R (2018) VassarStats: website for statistical computation. Vassar College, PoughkeepsieGoogle Scholar
  40. Martin JD, Ito Y, Homann VV et al (2006) Structure and membrane affinity of new amphiphilic siderophores produced by Ochrobactrum sp. SP18. J Biol Inorg Chem (JBIC) 11:633–641. CrossRefGoogle Scholar
  41. Martinez JS (2000) Self-assembling amphiphilic siderophores from marine bacteria. Science 287:1245–1247. CrossRefGoogle Scholar
  42. Massé E, Salvail H, Desnoyers G, Arguin M (2007) Small RNAs controlling iron metabolism. Curr Opin Microbiol 10:140–145. CrossRefGoogle Scholar
  43. Niehus R, Picot A, Oliveira NM et al (2017) The evolution of siderophore production as a competitive trait: the competitive evolution of siderophores. Evolution 71:1443–1455. CrossRefGoogle Scholar
  44. Papenfort K, Vogel J (2009) Multiple target regulation by small noncoding RNAs rewires gene expression at the post-transcriptional level. Res Microbiol 160:278–287. CrossRefGoogle Scholar
  45. Robertson AW, McCarville NG, MacIntyre LW et al (2018) Isolation of imaqobactin, an amphiphilic siderophore from the arctic marine bacterium Variovorax species RKJM285. J Nat Prod 81(4):858–865CrossRefGoogle Scholar
  46. Schalk IJ, Guillon L (2013) Fate of ferrisiderophores after import across bacterial outer membranes: different iron release strategies are observed in the cytoplasm or periplasm depending on the siderophore pathways. Amino Acids 44:1267–1277. CrossRefGoogle Scholar
  47. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. CrossRefGoogle Scholar
  48. Schwartz E, Henne A, Cramm R et al (2003) Complete nucleotide sequence of pHG1: a Ralstonia eutropha H16 megaplasmid encoding key enzymes of H2-based lithoautotrophy and anaerobiosis. J Mol Biol 332:369–383. CrossRefGoogle Scholar
  49. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56. CrossRefGoogle Scholar
  50. Seymour JR, Amin SA, Raina J-B, Stocker R (2017) Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat Microbiol 2:17065. CrossRefGoogle Scholar
  51. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68:850–858. CrossRefGoogle Scholar
  52. Stintzi A, Evans K, Meyer J, Poole K (1998) Quorum-sensing and siderophore biosynthesis in Pseudomonas aeruginosa: lasRllasI mutants exhibit reduced pyoverdine biosynthesis. FEMS Microbiol Lett 166:341–345. CrossRefGoogle Scholar
  53. Swanepoel A (2015) Sampling of diatoms and bacteria from the epilithic biofilm. In: T&M conference proceedings, M104Google Scholar
  54. Watnick PI, Eto T, Takahashi H, Calderwood SB (1997) Purification of Vibrio cholerae Fur and estimation of its intracellular abundance by antibody sandwich enzyme-linked immunosorbent assay. J Bacteriol 179:243–247CrossRefGoogle Scholar
  55. Wichard T (2016) Identification of metallophores and organic ligands in the chemosphere of the marine macroalga Ulva (Chlorophyta) and at land-sea interfaces. Front Mar Sci. Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Leibniz Institute for Natural Product Research and Infection BiologyHans Knöll InstituteJenaGermany
  2. 2.Institute for Inorganic and Analytical ChemistryFriedrich Schiller University JenaJenaGermany
  3. 3.Laboratory of Technical Biology, Department of Biochemical and Chemical EngineeringTU Dortmund UniversityDortmundGermany

Personalised recommendations