, Volume 30, Issue 2, pp 151–162 | Cite as

Zinc’s role in the glycemic control of patients with type 2 diabetes: a systematic review

  • Gabrielli Barbosa de Carvalho
  • Paula Nascimento Brandão-Lima
  • Carla Soraya Costa Maia
  • Kiriaque Barra Ferreira Barbosa
  • Liliane Viana PiresEmail author


Past research has shown the importance of zinc in several metabolic processes, such as the glucidic metabolism. The present systematic review aims to discuss zinc’s participation in the glycemic control of type 2 diabetes mellitus (DM2) patients. In order to accomplish that, a systematic search was performed in the Pubmed database using the following indexed and theme-related descriptors: “zinc” AND “type 2 diabetes mellitus”, AND MeSH terms related to glycemic control combined with the boolean operator OR. In total, 1078 articles were retrieved from the research, of which 15 articles of original studies conducted with DM2 patients were included, with three being about the effect of mineral supplementation and 12 reporting observational studies. The main findings of these studies consisted of low body contents of zinc and high excretion of zinc in urine. Hyperglycemia was one of the mechanisms that caused these alterations owing to its interference in zinc reabsorption via renal cells. Another evidence was the negative correlation between the glycated hemoglobin percentage (%HbA1c) and the plasma zinc levels. Additionally, it has been observed that zinc supplementation in DM2 patients has improved glycemic control, since the %HbA1c significantly reduced in these individuals. This present review shows the positive effect of adequate zinc levels on glycemic control, whether it is through dietetic ingestion or supplementation, since its role in insulin homeostasis is clear.


Zinc Glycemic control Diabetes Insulin 



The authors thank the research funding from CNPq (Conselho Nacional para o Desenvolvimento Científico e Tecnológico, Proc. n° 455117/2014-4) related to the theme of this review.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Al-Maroof RA, Al-Sharbatti SS (2006) Serum zinc levels in diabetic patients and effect of zinc supplementation on glycemic control of type 2 diabetics. Saudi Med J 27:344–350PubMedGoogle Scholar
  2. Badran M, Morsy R, Soliman H, Elnimr T (2016) Assessment of trace elements levels in patients with type 2 diabetes using multivariate statistical analysis. J Trace Elem Med Biol 33:114–119. doi: 10.1016/j.jtemb.2015.10.006 CrossRefPubMedGoogle Scholar
  3. Basaki M, Saeb M, Nazifi S, Shamsaei HA (2012) Zinc, copper, iron, and chromium concentrations in young patients with type 2 diabetes mellitus. Biol Trace Elem Res 148:161–164. doi: 10.1007/s12011-012-9360-6 CrossRefPubMedGoogle Scholar
  4. Basuki W, Hiromura M, Sakurai H (2007) Insulinomimetic Zn complex (Zn(opt)2) enhances insulin signaling pathway in 3 T3-L1 adipocytes. J Inorg Biochem 101:692–699. doi: 10.1016/j.jinorgbio.2006.12.015 CrossRefPubMedGoogle Scholar
  5. Capdor J, Foster M, Petocz P, Samman S (2013) Zinc and glycemic control: a meta-analysis of randomised placebo controlled supplementation trials in humans. J Trace Elem Med Biol 27:137–142. doi: 10.1016/j.jtemb.2012.08.001 CrossRefPubMedGoogle Scholar
  6. Chasapis CT, Loutsidou AC, Spiliopoulou CA, Stefanidou ME (2012) Zinc and human health: an update. Arch Toxicol 86:521–534. doi: 10.1007/s00204-011-0775-1 CrossRefPubMedGoogle Scholar
  7. Chausmer AB (1998) Zinc, insulin and diabetes. J Am Coll Nutr 17:109–115. doi: 10.1080/07315724.1998.1071873 CrossRefPubMedGoogle Scholar
  8. Chimienti F (2013) Zinc, pancreatic islet cell function and diabetes: new insights into an old story. Nutr Res Rev 26:1–11. doi: 10.1017/S0954422412000212 CrossRefPubMedGoogle Scholar
  9. Chimienti F, Devergnas S, Favier A (2004) Identification and cloning of a B-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 53:2330–2337. doi: 10.2337/diabetes.53.9.2330 CrossRefPubMedGoogle Scholar
  10. Chimienti F, Devergnas S, Pattou F, Schuit F, Garcia-Cuenca R, Vandewalle B, Kerr-Conte J, Van Lommel L, Grunwald D, Favier A, Seve M (2006) In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. J Cell Sci 119:4199–4206. doi: 10.1242/jcs.03164 CrossRefPubMedGoogle Scholar
  11. Doddigarla Z, Parwez I, Ahmad J (2015) Correlation of serum chromium, zinc, magnesium and SOD levels with HbA1c in type 2 diabetes: a cross sectional analysis. Diabetes Metab Syndr 10:126–129. doi: 10.1016/j.dsx.2015.10.008 CrossRefGoogle Scholar
  12. Dufner-Beattie J, Wang F, Kuo YM, Gitschier J, Eide D, Andrews GK (2003) The acrodermatitis enteropathica gene ZIP4 encodes a tissue-specific, zinc-regulated zinc transporter in mice. J Biol Chem 278:33474–33481. doi: 10.1074/jbc.M305000200 CrossRefPubMedGoogle Scholar
  13. Ekmecioglu C (2001) The role of trace elements for the health of elderly individuals. Nahrung 45:309–316. doi: 10.1002/1521-3803(20011001)45:5<309:AID-FOOD309>3.0.CO;2-0 CrossRefGoogle Scholar
  14. Fukada T, Yamasaki S, Nishida K, Murakami M, Hirano T (2011) Zinc homeostasis and signaling in health and diseases. J Biol Inorg Chem 16:1123–1134. doi: 10.1007/s00775-011-0797-4 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gross JL, Silveiro SP, Camargo JL, Reichelt AJ, Azevedo MJ (2002) Diabetes Melito: diagnóstico, Classificação e Avaliação do Controle Glicêmico. Arq Bras Endocrinol Metab 46:16–26. doi: 10.1590/S0004-27302002000100004 CrossRefGoogle Scholar
  16. Haase H, Maret W (2005) Fluctuations of cellular, available zinc modulate insulin signaling via inhibition of protein tyrosine phosphatases. J Trace Elem Med Biol 19:37–42. doi: 10.1016/j.jtemb.2005.02.004 CrossRefPubMedGoogle Scholar
  17. Huang L (2014) Zinc and its transporters, pancreatic β-cells, and insulin metabolism. Vitam Horm. doi: 10.1016/B978-0-12-800174-5.00014-4 PubMedGoogle Scholar
  18. Huang L, Yan M, Kirschke CP (2010) Over-expression of ZnT7 increases insulin synthesis and secretion in pancreatic beta-cells by promoting insulin gene transcription. Exp Cell Res. doi: 10.1016/j.yexcr.2010.06.017 Google Scholar
  19. Institute of Medicine (US) Panel on Micronutrients (2001) Dietary reference intakes for Vitamin A, Vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academy Press, WashingtonGoogle Scholar
  20. Jansen J, Karges W, Rink L (2009) Zinc and diabetes-clinical links and molecular mechanisms. J Nutr Biochem 20:399–417. doi: 10.1016/j.jnutbio.2009.01.009 CrossRefPubMedGoogle Scholar
  21. Jasen J, Rosenkranz E, Overbeck S, Warmuth S, Mocchegiani E, Giacconi R, Weiskirchen R, Karges W, Rink L (2012) Disturbed zinc homeostasis in diabetic patients by in vitro and in vivo analysis of insulinomimetic activity of zinc. J Nutr Biochem 23:1458–1466. doi: 10.1016/j.jnutbio.2011.09.008 CrossRefGoogle Scholar
  22. Jayawardena R, Ranasinghe P, Galappatthy P, Malkanthi RLDK, Constantine GR, Katulanda P (2012) Effects of zinc supplementation on diabetes mellitus: a systematic review and meta-analysis. Diabetol Metab Syndr 4:1–11. doi: 10.1186/1758-5996-4-13 CrossRefGoogle Scholar
  23. Jeong J, Eide DJ (2013) The SLC39 family of zinc transporters. Mol Aspects Med 34:612–619. doi: 10.1016/j.mam.2012.05.011 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kambe T, Hashimoto A, Fujimoto S (2014) Current understanding of ZIP and ZnT zinc transporters in human health and diseases. Cell Mol Life Sci 71:3281–3295. doi: 10.1007/s00018-014-1617-0 CrossRefPubMedGoogle Scholar
  25. Kazi TG, Afridi HI, Kazi N, Jamali NK, Arain MB, Jalbani N, Kandhro GA (2008) Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients. Biol Trace Elem Res 122:1–18. doi: 10.1007/s12011-007-8062-y CrossRefPubMedGoogle Scholar
  26. Khan FA, Jameil NAI, Arjumand S, Khan MF, Tabassum H, Alenzi N, Hijazy S, Alenzi S, Subaie S, Fatima S (2015) Comparative study of serum copper, iron, magnesium and zinc in type 2 diabetes-associated proteinuria. Biol Trace Elem Res 168:321–329. doi: 10.1007/s12011-015-0379-3 CrossRefPubMedGoogle Scholar
  27. Koga M, Kasayama S (2010) Clinical impact of glycated albumin as another glycemic control marker. Endocr J 57:751–762. doi: 10.1507/endocrj.K10E-138 CrossRefPubMedGoogle Scholar
  28. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174. doi: 10.2307/2529310 CrossRefPubMedGoogle Scholar
  29. Lemaire K, Ravier MA, Schraenen A, Creemers JW, Van de Plas R, Granvik M, Van Lommel L, Waelkens E, Chimienti F, Rutter GA, Gilon P, in’t Veld PA, Schuit FC (2009) Insulin crystallization depends on zinc transporter ZnT8 expression, but is not required for normal glucose homeostasis in mice. Proc Natl Acad Sci USA 106:14872–14877. doi: 10.1073/pnas.0906587106 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lima VBS, Sampaio FA, Bezerra DLC, Moita Neto JM, Marreiro DN (2011) Parameters of glycemic control and their relationship with zinc concentrations in blood and with superoxide dismutase enzyme activity in type 2 diabetes patients. Arq Bras Endocrinol Metabol 55:701–707. doi: 10.1590/S0004-27302011000900006 CrossRefPubMedGoogle Scholar
  31. Lönnerdal BO (2000) Dietary factors influencing zinc absorption. J Nutr 130:1378–1383Google Scholar
  32. Luo YY, Zhao J, Han XY, Zhou XH, Wu J, Ji LN (2015) Relationship between serum zinc level and microvascular complications in patients with type 2 diabetes. Chin Med J 128:3276–3282. doi: 10.4103/0366-6999.171357 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Mafra D, Cozzolino SMF (2004) Importância do zinco na nutrição humana. Rev. Nutr 17:79–87. doi: 10.1590/S1415-52732004000100009 CrossRefGoogle Scholar
  34. Marreiro DN, Martins MPSC, Sousa SSR, Torres VIS, Pires LV, Nogueira NN, Lima JMC, Monte SJH (2007) Urinary excretion of zinc and metabolic control of patients with diabetes type 2. Biol Trace Elem Res 120:42–50. doi: 10.1007/s12011-007-8000-z CrossRefPubMedGoogle Scholar
  35. Maruthur NM, Clark JM, Fu M, Linda KWH, Shuldiner AR (2015) Effect of zinc supplementation on insulin secretion: interaction between zinc and SLC30A8 genotype in old order amish. Diabetologia 58:295–303. doi: 10.1007/s00125-014-3419-1 CrossRefPubMedGoogle Scholar
  36. Masood N, Baloch GHm Ghori RA, Memon IA, Memon MA, Memon MS (2009) Serum zinc and magnesium in type-2 diabetic patients. J Coll Physicians Surg Pak 19:483–486PubMedGoogle Scholar
  37. Myers SA, Nield A, Myers M (2012) Zinc transporters, mechanisms of action and therapeutic utility: implications for type 2 diabetes mellitus. J Nutr Metabol. doi: 10.1155/2012/173712 Google Scholar
  38. Naito Y, Yoshikawa Y, Yasui H (2011) Cellular mechanism of zinchinokitiol complexes in diabetes mellitus. Bull Chem Soc Jpn 84:298–305. doi: 10.1246/bcsj.20100262 CrossRefGoogle Scholar
  39. Nakayama A, Hiromura M, Adachi Y, Sakurai H (2008) Molecular mechanism of antidiabetic zinc-allixin complexes: regulations of glucose utilization and lipid metabolism. J Biol Inorg Chem 13:675–684. doi: 10.1007/s00775-008-0352-0 CrossRefPubMedGoogle Scholar
  40. Nsonwu AC, Usoro CAO, Etukudo MH, Usoro IN (2006) Influence of Age, gender and duration of diabetes on serum and urine levels of zinc, magnesium, and chromium in type 2 diabetics in Calabar, Nigeria. Turk J Biochem 1:107–114Google Scholar
  41. Oh HM, Yoon JS (2008) Glycemic control of type 2 diabetic patients after short-term zinc supplementation. Nutr Res Pract 2:283–288CrossRefPubMedPubMedCentralGoogle Scholar
  42. Parham M, Amini M, Aminorroaya A, Heidarian E (2008) Effect of zinc supplementation on microalbuminuria in patients with type 2 diabetes: a double blind, randomized, placebo-controlled, cross-over trial. Rev Diabetic Stud 5:102–109. doi: 10.1900/RDS.2008.5.102 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ranasinghe P, Pigera S, Galappatthy P, Katulanda P, Constantine GR (2015) Zinc and diabetes mellitus: understanding molecular mechanisms and clinical implications. DARU J Pharm Sci 17:23–44. doi: 10.1186/s40199-015-0127-4 Google Scholar
  44. Saharia GK, Goswami RK (2013) Evaluation of serum zinc status and glycated hemoglobin of type 2 diabetes mellitus patients in a tertiary care hospital of Assam. J Lab Physicians 5:30–33. doi: 10.4103/0974-2727.115923 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Salgueiro MJ, Krebs N, Zubillaga MB, Weil R, Postaire E, Lysionek A, Caro RA, De Paoli T, Hager A, Boccio J (2001) Zinc and diabetes mellitus: is there a need of zinc supplementation in diabetes mellitus patients? Biol Trace Elem Res 81:215–228. doi: 10.1385/BTER:81:3:21 CrossRefPubMedGoogle Scholar
  46. Savarino L, Granchi D, Ciapetti G, Cenni E, Ravaglia G, Forti P, Maroli F, Mathiolio R (2001) Serum concentrations of zinc and selenium in elderly people; result in healthy nonagenarians/centenarians. Exp Gerontol 36:327–339. doi: 10.1016/S0531-5565(00)00218-7 CrossRefPubMedGoogle Scholar
  47. Seve M, Chimienti F, Favier A (2002) Role of intracellular zinc in programmed cells death. Pathol Biol 50:212–221CrossRefPubMedGoogle Scholar
  48. Shan Z, Bao W, Zhang Y, Rong Y, Wang X, Jin Y, Song Y, Yao P, Sun C, Hu FB, Liu L (2014) Interactions between zinc transporter-8 gene (SLC30A8) and plasma zinc concentrations for impaired glucose regulation and type 2 diabetes. Diabetes 63:1796–1803. doi: 10.2337/db13-0606 CrossRefPubMedGoogle Scholar
  49. Silvestri S, Orlando P, Brugè F, Falcioni G, Tiano L (2016) Effect of different metals on oxidative state and mitochondrial membrane potential in trout erythrocytes. Ecotoxicol Environ Saf 134:280–285. doi: 10.1016/j.ecoenv.2016.07.040 CrossRefGoogle Scholar
  50. Sinha S, Sen S (2014) Status of zinc and magnesium levels in type 2 diabetes mellitus and its relationship with glycemic status. Int J Diabetes Dev Ctries 34:220–223. doi: 10.1007/s13410-014-0196-9 CrossRefGoogle Scholar
  51. Sun Q, van Dam RM, Willet WC, Hu FB (2009) Prospective study of zinc intake and risk of type 2 diabetes in women. Diabetes Care 31:629–634. doi: 10.2337/dc08-1913 CrossRefGoogle Scholar
  52. Vanquero MP (2002) Magnesium and trace elements in the elderly; intake, status and recommendations. J Nutr Health Ageing 6:147–153Google Scholar
  53. Viktorínová A, Tošerová E, Križko M, Ďuračková Z (2009) Altered metabolism of copper, zinc, and magnesium is associated with increased levels of glycated hemoglobin in patients with diabetes mellitus. Metabolism 58:1477–1482. doi: 10.1016/j.metabol.2009.04.035 CrossRefPubMedGoogle Scholar
  54. Wijesekara N, Chimienti F, Wheeler MB (2009) Zinc, a regulator of islet function and glucose homeostasis. Diabetes Obes Metabol 11:202–214. doi: 10.1111/j.1463-1326.2009.01110.x CrossRefGoogle Scholar
  55. Xu J, Zhou Q, Liu G, Tan Y, Cai L (2013) Analysis of serum and urinal copper and zinc in Chinese Northeast population with the prediabetes or diabetes with and without complications. Oxid Med Cell Longev 2013:1–11. doi: 10.1155/2013/635214 CrossRefGoogle Scholar
  56. Yerlikaya FH, Toker A, Aribaş A (2013) Serum trace elements in obese women with or without diabetes. Indian J Med Res 137:339–345PubMedPubMedCentralGoogle Scholar
  57. Yoshiwaka Y, Ueda E, Kojima Y, Sakurai H (2004) The action mechanism of zinc(II) complexes with insulinomimetic activity in rat adipocytes. Life Sci 76:741–751. doi: 10.1016/j.lfs.2004.02.006 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Gabrielli Barbosa de Carvalho
    • 1
  • Paula Nascimento Brandão-Lima
    • 2
  • Carla Soraya Costa Maia
    • 3
  • Kiriaque Barra Ferreira Barbosa
    • 4
  • Liliane Viana Pires
    • 4
    Email author
  1. 1.Graduation in Nutrition, Department of NutritionFederal University of SergipeSão CristóvãoBrazil
  2. 2.Health Sciences Post-graduation Program, Department of MedicineFederal University of SergipeAracajuBrazil
  3. 3.Department of NutritionState University of CearáFortalezaBrazil
  4. 4.Department of NutritionFederal University of SergipeSão CristóvãoBrazil

Personalised recommendations