, Volume 30, Issue 6, pp 955–974 | Cite as

Life and death of Trypanosoma cruzi in presence of metals

  • Laís Pessanha de Carvalho
  • Edésio José Tenório de MeloEmail author


Trypanosoma cruzi has many molecules that need metallic elements to work, allowing cell invasion and the establishment of infection, causing Chagas disease. Nonetheless, knowledge regarding how the parasites address metals and maintain homeostasis is lacking. To study this relationship, zinc, cadmium and mercury were chosen. Epimastigote, trypomastigote and intracellular forms of T. cruzi were incubated with these metals for different times and at different concentrations. In general, epimastigotes were the most sensitive and trypomastigotes the most resistant to metals. ZnCl2 induced low toxic effects to all parasite forms. Although the parasites were very sensitive to the toxic effects of CdCl2 and HgCl2, pretreatment with ZnCl2 decreased the death rate. The trypomastigotes pretreated with CdCl2 were unable to infect the host cells, and the treated intracellular forms were damaged after 2 h of incubation, when the toxic effects were poorly reverted. New insights on metal toxicity mechanisms are provided, helping to understand how metallic ions influence the parasite’s biochemical and physiological processes.


Cadmium Essential metals Mercury Non-essential metals Trypanosoma cruzi and zinc 



FAPERJ (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro) (Grant number: E-26/010.002612/2014) and CNPq (Conselho Nacional de Pesquisa).


  1. Alvarez VE, Niemirowicz GT, Cazzulo JJ (2012) The peptidases of Trypanosoma cruzi: digestive enzymes, virulence factors, and mediators of autophagy and programmed cell death. Biochim Biophys Acta 1824:195–206CrossRefPubMedGoogle Scholar
  2. Alves MJ, Colli W (2007) Trypanosoma cruzi: adhesion to the host cell and intracellular survival. IUBMB Life 59:274–279CrossRefPubMedGoogle Scholar
  3. Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM (2008) Metal ions in biological catalysis: from enzyme databases to general principles. J Biol Inorg Chem 13:1205–1218CrossRefPubMedGoogle Scholar
  4. Beraldo H, Gambino D (2004) The wide pharmacological versatility of semicarbazones, thiosemicarbazones and their metal complexes. Mini Rev Med Chem 4:31–39CrossRefPubMedGoogle Scholar
  5. Bray TM, Bettger WJ (1990) The physiological role of zinc as an antioxidant. Free Radic Biol Med 8:281–291CrossRefPubMedGoogle Scholar
  6. Butcher H, Kennette W, Collins O et al (2003) A sensitive time-resolved fluorescent immunoassay for metallothionein protein. J Immunol Methods 272:247–256CrossRefPubMedGoogle Scholar
  7. Carvalho LP, Melo EJT (2016) Non-essential and essential metal effects on intracellular Toxoplasma gondii. Eur J Biomed Pharm Sci 3:23–32Google Scholar
  8. Carvalho CS, Melo EJT, Tenório RP, Góes AJ (2010) Anti-parasitic action and elimination of intracellular Toxoplasma gondii in the presence of novel thiosemicarbazone and its 4-thiazolidinone derivatives. Braz J Med Biol Res 43:139–149CrossRefPubMedGoogle Scholar
  9. Demoro B, Caruso F, Rossi M et al (2010) Risedronate metal complexes potentially active against Chagas disease. J Inorg Biochem 104:1252–1258CrossRefPubMedPubMedCentralGoogle Scholar
  10. Demoro B, Almeida RFM, Marques F et al (2013) Screening organometallic binuclear thiosemicarbazone ruthenium complexes as potential anti-tumour agents: cytotoxic activity and human serum albumin binding mechanism. Dalton Trans 42:7131–7146CrossRefPubMedGoogle Scholar
  11. Eide DJ (2006) Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta 1763:711–722CrossRefPubMedGoogle Scholar
  12. Eptin CL, Coatesa BM, Engman DM (2010) Molecular mechanisms of host cell invasion by Trypanosoma cruzi. Exp Parasitol 126:283–291CrossRefGoogle Scholar
  13. Fairlamb AH, Cerami A (1992) Metabolism and fuctions of trypanothione in the Kinetoplastida. Annu Rev Microbiol 46:695–729CrossRefPubMedGoogle Scholar
  14. Feng W, Cai J, Pierce WM et al (2005) Metallothionein transfers zinc to mitochondrial aconitase through a direct interaction in mouse hearts. Biochem Biophys Res Commun 332:853–858CrossRefPubMedGoogle Scholar
  15. Fernández M, Varela J, Correia I et al (2013) A new series of heteroleptic oxidovanadium (IV) compounds with phenanthroline-derived co-ligands: selective Trypanosoma cruzi growth inhibitors. Dalton Trans 42:11900–11911CrossRefPubMedGoogle Scholar
  16. Ferreira RC, Kessier RL, Lorenzo MG et al (2016) Colonization of Rhodnius prolixus gut by Trypanosoma cruzi involves an extensive parasite killing. Parasitology 143:434–443CrossRefPubMedGoogle Scholar
  17. Florencio-Martínez L, Márquez-Dueñas C, Ballesteros-Rodea G, Martínez-Calvillo S, Manning-Cela R (2010) Cellular analysis of host cell infection by different developmental stages of Trypanosoma cruzi. Exp Parasitol 126:332–336CrossRefPubMedGoogle Scholar
  18. Formigari A, Irato P, Santon A (2007) Zinc, antioxidant systems and metallothionein in metal mediated-apoptosis: biochemical and cytochemical aspects. Comp Biochem Physiol C 146:443–459Google Scholar
  19. Girault L, Boudou A, Drfourc EJ (1997) Methyl mercury interactions with phospholipid membranes as reported by fluorescence, 31P and 199Hg NMR. Biochim Biophys Acta 1325:250–262CrossRefPubMedGoogle Scholar
  20. Gomes MAGB, Carvalho LP, Melo EJT, Oliveira RR, Maria EJ (2012) Evaluating anti-Toxoplasma gondii activity of new serie of phenylsemicarbazone and phenylthiosemicarbazones in vitro. Med Chem Res 22:3574–3580CrossRefGoogle Scholar
  21. Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283:65–87CrossRefPubMedGoogle Scholar
  22. Klaassen CD, Liu J, Choudhuri S (1999) Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol 39:267–294CrossRefPubMedGoogle Scholar
  23. Kollien AH, Schaub GA (2000) The development of Trypanosoma cruzi in triatominae. Parasitol Today 16:381–387CrossRefPubMedGoogle Scholar
  24. Kulkarni MM, Olson CL, Engman DM, McGwire BS (2009) Trypanosoma cruzi GP63 proteins undergo stage-specific differential posttranslational modification and are important for host cell infection. Infec Immu 77:2193–2200CrossRefGoogle Scholar
  25. Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11:371–384CrossRefPubMedGoogle Scholar
  26. Ley V, Robbins ES, Nussenzweig V, Andrews NW (1990) The exit of Trypanosoma cruzi from the phagosome is inhibiteed by raising the pH of acidic compartments. J Exp Med 171:401–413CrossRefPubMedGoogle Scholar
  27. Maret W, Vallee BL (1998) Thiolate ligands in metallothionein confer redox activity on zinc clusters. Proc Natl Acad Sci USA 95:3478–3482CrossRefPubMedPubMedCentralGoogle Scholar
  28. Martinez-Finley EJ, Chakraborty S, Fretham SJ, Aschner M (2012) Cellular transport and homeostasis of essential and nonessential metals. Metallomics 4:593–605CrossRefPubMedPubMedCentralGoogle Scholar
  29. Maya JD, Rodríguez A, Pino L et al (2004) Effects of buthionine sulfoximine nifurtimox and benznidazole upon trypanothione and metallothionein proteins in Trypanosoma cruzi. Biol Res 37:61–69CrossRefPubMedGoogle Scholar
  30. Morey JR, McDevitt CA, Kehl-Fie TE (2015) Host-imposed manganese starvation of invading pathogens: two routes to the same destination. Biometals 28:509–519CrossRefPubMedPubMedCentralGoogle Scholar
  31. Moulis JM (2010) Cellular mechanisms of cadmium toxicity related to the homeostasis of essential metals. Biometals 23:877–896CrossRefPubMedGoogle Scholar
  32. Moulis JM, Thévenod F (2010) New perspectives in cadmium toxicity: an introduction. Biometals 23:763–768CrossRefPubMedGoogle Scholar
  33. Nogueira NP, Saraiva FMS, Sultano PE (2015) Proliferation and differentiation of Trypanosoma cruzi inside its vector have a new trigger: redox status. PLoS ONE 10:1–16Google Scholar
  34. Parkin G (2004) Synthetic analogues relevant to the structure and function of zinc enzymes. Chem Rev 104:699–768CrossRefPubMedGoogle Scholar
  35. Rana SV (2008) Metals and apoptosis: recent developments. J Trace Elem Med Biol 22:262–284CrossRefPubMedGoogle Scholar
  36. Reyes-Caballero H, Campanello GC, Giedroc DP (2011) Metalloregulatory proteins: metal selectivity and allosteric switching. Biophys Chem 156:103–114CrossRefPubMedGoogle Scholar
  37. Roohani N, Hurrell R, Kelishadi R, Schulin R (2013) Zinc and its importance for human health: an integrative review. J Res Med Sci 18:144–157PubMedPubMedCentralGoogle Scholar
  38. Rosestolato CT, Dutra JM, Souza W, Carvalho TM (2002) Participation of host cell actin filaments during interaction of trypomastigote forms of Trypanosoma cruzi with host cells. Cell Struct Funct 27:91–98CrossRefPubMedGoogle Scholar
  39. Rousselet E, Richaud P, Douki T et al (2008) A zinc-resistant human epithelial cell line is impaired in cadmium and manganese import. Toxicol Appl Pharmacol 230:312–319CrossRefPubMedGoogle Scholar
  40. Sánchez-Delgado RA, Anzellotti A (2004) Metal complexes as chemotherapeutic agents against tropical diseases: trypanosomiasis, malaria and leishmaniasis. Mini Rev Med Chem 4:23–30CrossRefPubMedGoogle Scholar
  41. Santon A, Albergoni V, Sturniolo GC, Irato P (2004) Evaluation of MT expression and detection of apoptotic cells in LEC rat kidneys. Biochim Biophys Acta 1688:223–231CrossRefPubMedGoogle Scholar
  42. Santos KK, Matias EF, Tintino SR et al (2012) Anti-Trypanosoma cruzi and cytotoxic activities of Eugenia uniflora L. Exp Parasitol 131:130–132CrossRefPubMedGoogle Scholar
  43. Sears ME (2013) Chelation: harnessing and enhancing heavy metal detoxification—a review. Sci World J 2013:219840CrossRefGoogle Scholar
  44. Shimoda R, Achanzar WE, Qu W et al (2003) Metallothionein is a potential negative regulator of apoptosis. Toxicol Sci 73:294–300CrossRefPubMedGoogle Scholar
  45. Souza W (2002) From the cell biology to the development of new chemotherapeutic approaches against trypanosomatids: dreams and reality. Kinetoplastid Biol Dis 1:1–21CrossRefGoogle Scholar
  46. Souza W, Carvalho TM, Barrias ES (2010) Review on Trypanosoma cruzi: host cell interaction. Int J Cell Biol 2010:295493CrossRefGoogle Scholar
  47. Suhy DA, Simon KD, Linzer DI, O’Halloran TV (1999) Metallothionein is part of a zinc-scavenging mechanism for cell survival under conditions of extreme zinc deprivation. J Biol Chem 274:9183–9192CrossRefPubMedGoogle Scholar
  48. Templeton DM, Liu Y (2010) Chemico-biological interactions multiple roles of cadmium in cell death and survival. Chem Biol Interact 188:267–275CrossRefPubMedGoogle Scholar
  49. Tyler KM, Engman DM (2001) The life cycle of Trypanosoma cruzi revisited. Int J Parasitol 31(5–6):472–481CrossRefPubMedGoogle Scholar
  50. Valko M, Rhodes CJ, Moncol J et al (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40CrossRefPubMedGoogle Scholar
  51. Vašák M (2005) Advances in metallothionein structure and functions. J Trace Elem Med Biol 19:13–17CrossRefPubMedGoogle Scholar
  52. Villalta F, Scharfstein J, Ashton AW et al (2009) Perspectives on the Trypanosoma cruzi-host cell receptor interactions. Parasitol Res 104:1251–1260CrossRefPubMedPubMedCentralGoogle Scholar
  53. Waisberg M, Joseph P, Hale B, Beyersmann D (2003) Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192:95–117CrossRefPubMedGoogle Scholar
  54. Waldron K, Rutherford JC, Ford D, Robinson NJ (2009) Metalloproteins and metal sensing. Nature 460:823–830CrossRefPubMedGoogle Scholar
  55. Weinberg ED (1966) Roles of metallic ions in host-parasite interactions differential metallic ion growth requirements of virulent and avirulent bacterial strains. Microbiol Mol Biol Rev 30:136–151Google Scholar
  56. Wilkinson SR, Taylor MC, Touitha S (2002) TcGPXII, a glutathione-dependent Trypanosoma cruzi peroxidase with substrate specificity restricted to fatty acid and phospholipid hydroperoxides, is localized to the endoplasmic reticulum. Biochem J 364:787–794CrossRefPubMedPubMedCentralGoogle Scholar
  57. Yoshida M, Saegusa Y, Fukuda A (2005) Measurement of radical-scavenging ability in hepatic metallothionein of rat using in vivo electron spin resonance spectroscopy. Toxicology 213:74–80CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Laís Pessanha de Carvalho
    • 1
  • Edésio José Tenório de Melo
    • 1
    Email author
  1. 1.Laboratory of Tissue and Cell BiologyState University of North Fluminense – Darcy RibeiroCampos dos GoytacazesBrazil

Personalised recommendations