, Volume 30, Issue 5, pp 719–732 | Cite as

Methane enhances aluminum resistance in alfalfa seedlings by reducing aluminum accumulation and reestablishing redox homeostasis

  • Weiti Cui
  • Hong Cao
  • Ping Yao
  • Jincheng Pan
  • Quan Gu
  • Sheng Xu
  • Ren Wang
  • Zhaozeng Ouyang
  • Qingya WangEmail author
  • Wenbiao ShenEmail author


Methane (CH4) is emerging as a candidate of signal molecule recently. However, whether or how CH4 enhances plant adaptation to aluminum (Al)-contaminated environment is still unknown. In this report, the physiological roles and possible molecular mechanisms of CH4 in the modulation of Al toxicity in alfalfa seedlings were characterized. Our results showed that, CH4 pretreatment could alleviate Al-induced seedling growth inhibition and redox imbalance. The defensive effects of CH4 against Al toxicity including the remission of Al-induced root elongation inhibition, nutrient disorder, and relative electrolyte leakage. Moreover, contents of organic acids, including citrate, malate, and oxalate, were increased by CH4. These results were paralleled by the findings of CH4 regulated organic acids metabolism and transport genes, citrate synthase, malate dehydrogenase, aluminum-activated malate transporter, and aluminum activated citrate transporter. Consistently, Al accumulation in seedling roots was decreased after CH4 treatment. In addition, Al-induced oxidative stress was also alleviated by CH4, through the regulation of the activities of anti-oxidative enzymes, such as ascorbate peroxidase, superoxide dismutase, and peroxidase, as well as their corresponding transcripts. Our data clearly suggested that CH4 alleviates Al toxicity by reducing Al accumulation in organic acid-dependent fashion, and reestablishing redox homeostasis.


Aluminum (Al) toxicity Methane Medicago sativa Organic acids Oxidative stress 



Aluminum activated citrate transporter




Aluminum-activated malate transporter


Ascorbic acid peroxidase






Citrate synthase




Glutathione reductase


High performance liquid chromatography


Inductively coupled plasma-optical emission spectrometer


Malate dehydrogenase


Nitric oxide


Guaiacol peroxidase


Reactive oxygen species


Superoxide dismutase


Thiobarbituric acid reactive substances



This work was supported by the National Natural Science Foundation of China (J1210056 and J1310015), the Natural Science Foundation of Jiangsu Province (BK20130683), and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). We also thank Dr. Evan Evans from the University of Tasmania, Australia for his kind help in editing the manuscript.

Supplementary material

10534_2017_40_MOESM1_ESM.doc (38 kb)
Supplementary material 1 (DOC 38 kb)
10534_2017_40_MOESM2_ESM.doc (43 kb)
Supplementary material 2 (DOC 43 kb)


  1. Achary VMM, Jena S, Panda KK, Panda BB (2008) Aluminium induced oxidative stress and DNA damage in root cells of Allium cepa L. Ecotoxicol Environ Saf 70:300–310. doi: 10.1016/j.ecoenv.2007.10.022 CrossRefPubMedGoogle Scholar
  2. Ali B, Qian P, Sun R, Farooq MA, Gill RA, Wang J, Azam M, Zhou W (2015) Hydrogen sulfide alleviates the aluminum-induced changes in Brassica napus as revealed by physiochemical and ultrastructural study of plant. Environ Sci Pollut Res 22:3068–3081. doi: 10.1007/s11356-014-3551-y CrossRefGoogle Scholar
  3. Anoop VM, Basu U, McCammon MT, McAlister-Henn L, Taylor GJ (2003) Modulation of citrate metabolism alters aluminum tolerance in yeast and transgenic canola overexpressing a mitochondrial citrate synthase. Plant Physiol 132:2205–2217. doi: 10.1104/pp.103.023903 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barone P, Rosellini D, Lafayette P, Bouto J, Veronesi F, Parrott W (2008) Bacterial citrate synthase expression and soil aluminum tolerance in transgenic alfalfa. Plant Cell Rep 27:893–901. doi: 10.1007/s00299-008-0517-x CrossRefPubMedGoogle Scholar
  5. Basu U, Good AG, Taylor GJ (2001) Transgenic Brassica napus plants overexpressing aluminium-induced mitochondrial manganese superoxide dismutase cDNA are resistant to aluminium. Plant Cell Environ 24:1269–1278. doi: 10.1046/j.0016-8025.2001.00783.x CrossRefGoogle Scholar
  6. Boros M, Ghyczy M, Érces D, Varga G, Tökés T, Kupai K, Torday C, Kaszaki J (2012) The anti-inflammatory effects of methane. Crit Care Med 40:1269–1278. doi: 10.1097/CCM.0b013e31823dae05 CrossRefPubMedGoogle Scholar
  7. Boros M, Tuboly E, Mészáros A, Amann A (2015) The role of methane in mammalian physiology—is it a gasotransmitter? J Breath Res 9:014001. doi: 10.1088/1752-7155/9/1/014001 CrossRefPubMedGoogle Scholar
  8. Bose J, Babourina O, Rengel Z (2011) Role of magnesium in alleviation of aluminium toxicity in plants. J Exp Bot 62:2251–2264. doi: 10.1093/jxb/erq456 CrossRefPubMedGoogle Scholar
  9. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi: 10.1016/0003-2697(76)90527-3 CrossRefPubMedGoogle Scholar
  10. Bruhn D, Mikkelsen TN, Obro J, Willats WG, Ambus P (2009) Effects of temperature, ultraviolet radiation and pectin methyl esterase on aerobic methane relase from plant material. Plant Biol 11:43–48. doi: 10.1111/j.1438-8677.2009.00202.x CrossRefPubMedGoogle Scholar
  11. Bruhn D, Møller IM, Mikkelsen TN, Ambus P (2012) Terrestrial plant methane production and emission. Physiol Plant 144:201–209. doi: 10.1111/j.1399-3054.2011.01551.x CrossRefPubMedGoogle Scholar
  12. Chen J, Wang WH, Wu FH, You CY, Liu TW, Dong XJ, He JX, Zheng HL (2013a) Hydrogen sulfide alleviates aluminum toxicity in barley seedlings. Plant Soil 362:301–318. doi: 10.1007/s11104-012-1275-7 CrossRefGoogle Scholar
  13. Chen Q, Wu KH, Wang P, Yi J, Li Z, Yu YX, Chen LM (2013b) Overexpression of MsALMT1, from the aluminum-sensitive Medicago sativa, enhances malate exudation and aluminum resistance in tobacco. Plant Mol Biol Rep 31:769–774. doi: 10.1007/s11105-012-0543-2 CrossRefGoogle Scholar
  14. Chen M, Cui W, Zhu K, Xie Y, Zhang C, Shen W (2014) Hydrogen-rich water alleviates aluminum-induced inhibition of root elongation in alfalfa via decreasing nitric oxide production. J Hazard Mater 267:40–47. doi: 10.1016/j.jhazmat.2013.12.029 CrossRefPubMedGoogle Scholar
  15. Chen YE, Cui JM, Yang JC, Zhang ZW, Yuan M, Song C, Yang H, Liu HM, Wang CQ, Zhang HY, Zeng XY, Yuan S (2015) Biomonitoring heavy metal contaminations by moss visible parameters. J Hazard Mater 296:201–209. doi: 10.1016/j.jhazmat.2015.04.060 CrossRefPubMedGoogle Scholar
  16. Chen O, Ye Z, Cao Z, Manaenko A, Ning K, Zhai X, Zhang R, Zhang T, Chen X, Liu W, Sun X (2016) Methane attenuates myocardial ischemia injury in rats through anti-oxidative, anti-apoptotic and anti-inflammatory actions. Free Radic Biol Med 90:1–11. doi: 10.1016/j.freeradbiomed.2015.11.017 CrossRefPubMedGoogle Scholar
  17. Cui W, Li L, Gao Z, Wu H, Xie Y, Shen W (2012) Haem oxygenase-1 is involved in salicylic acid-induced alleviation of oxidative stress due to cadmium stress in Medicago sativa. J Exp Bot 63:5521–5534. doi: 10.1093/jxb/ers201 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cui W, Zhang J, Xuan W, Xie Y (2013) Up-regulation of heme oxygenase-1 contributes to the amelioration of aluminum-induced oxidative stress in Medicago sativa. J Plant Physiol 170:1328–1336. doi: 10.1016/j.jplph.2013.05.014 CrossRefPubMedGoogle Scholar
  19. Cui W, Qi F, Zhang Y, Ca H, Zhang J, Wang R, Shen W (2015) Methane-rich water induces cucumber adventitious rooting through heme oxygenae1/carbon monoxide and Ca2+ pathways. Plant Cell Rep 34:435–445. doi: 10.1007/s00299-014-1723-3 CrossRefPubMedGoogle Scholar
  20. Dawood M, Cao F, Jahangir MM, Zhang G, Wu F (2012) Alleviation of aluminum toxicity by hydrogen sulfide is related to elevated ATPase, and suppressed aluminum uptake and oxidative stress in barley. J Hazard Mater 209–210:121–128. doi: 10.1016/j.jhazmat.2011.12.076 CrossRefPubMedGoogle Scholar
  21. Delhaize E, MaJF Ryan PR (2012) Transcriptional regulation of aluminium tolerance genes. Trends Plant Sci 17:341–348. doi: 10.1016/j.tplants.2012.02.008 CrossRefPubMedGoogle Scholar
  22. Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasak T, Matsumoto H (2004) Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proc Natl Acad Sci USA 101:15249–15254. doi: 10.1073/pnas.0406258101 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Deng W, Luo K, Li Z, Yang Y, HuN WuY (2009) Overexpression of Citrus junos mitochondrial citrate synthase gene in Nicotiana benthamiana confers aluminum tolerance. Planta 230:355–365. doi: 10.1007/s00425-009-0945-z CrossRefPubMedGoogle Scholar
  24. Fan W, Xu JM, Lou HQ, Xiao C, Chen WW, Yang JL (2016) Physiological and molecular analysis of aluminium-induced organic acid anion secretion from grain amaranth (Amaranthus hypochondriacus L.) roots. Int J Mol Sci 17:608. doi: 10.3390/ijms17050608 CrossRefPubMedCentralGoogle Scholar
  25. Fujii M, Yokosho K, Yamaji N, Saisho D, Yamane M, Takahashi H, Sato K, Nakazono M, Ma JF (2012) Acquisition of aluminium tolerance by modification of a single gene in barley. Nat Commun 3:713. doi: 10.1038/ncomms1726 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Giannakoula A, Moustakas M, Syros T, Yupsanis T (2010) Aluminum stress induces up-regulation of an efficient antioxidant system in the Al-tolerant maize line but not in the Al-sensitive line. Environ Exp Bot 67:487–494. doi: 10.1016/j.envexpbot.2009.07.010 CrossRefGoogle Scholar
  27. Guo DY, Zhao SY, Huang LL, Ma CY, Hao L (2014) Aluminum tolerance in Arabidopsis thaliana as affected by endogenous salicylic acid. Biol Plant 58:725–732. doi: 10.1007/s10535-014-0439-0 CrossRefGoogle Scholar
  28. Han B, Duan X, Wang Y, Zhu K, Zhang J, Wang R, Hu H, Qi F, Pan J, Yan Y, Shen W (2017) Methane protects against polyethylene glycol-induced osmotic stress in maize by improving sugar and ascorbic acid metabolism. Sci Rep. doi: 10.1038/srep46185 Google Scholar
  29. He H, Zhan J, He L, Gu M (2012) Nitric oxide signaling in aluminum stress in plants. Protoplasma 249:483–492. doi: 10.1007/s00709-011-0310-5 CrossRefPubMedGoogle Scholar
  30. He R, Wang L, Zhu J, Fei M, Bao S, Meng Y, Wang Y, Li J, Deng X (2016) Methane-rich saline protects against concanavalin A-induced autoimmune hepatitis in mice through anti-inflammatory and anti-oxidative pathways. Biochem Biophys Res Commun 470:22–28. doi: 10.1016/j.bbrc.2015.12.080 CrossRefPubMedGoogle Scholar
  31. Khan AL, Waqas M, Hussain J, Al-Harrasi A, Hamayun M, Lee IJ (2015) Phytohormones enabled endophytic fungal symbiosis improve aluminum phytoextraction in tolerant Solanum lycopersicum: an examples of Penicillium janthinellum LK5 and comparison with exogenous GA3. J Hazard Mater 295:70–78. doi: 10.1016/j.jhazmat.2015.04.008 CrossRefPubMedGoogle Scholar
  32. Kochian LV, Hoekenga OA, Piñeros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493. doi: 10.1146/annurev.arplant.55.031903.141655 CrossRefPubMedGoogle Scholar
  33. Kochian LV, Piñeros MA, Liu J, Magalhaes JV (2015) Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Annu Rev Plant Biol 66:571–598. doi: 10.1146/annurev-arplant-043014-114822 CrossRefPubMedGoogle Scholar
  34. Kollmeier M, Felle HH, Horst WJ (2000) Genotypical differences in aluminum resistance of maize are expressed in the distal part of the transition zone. Is reduced basipetal auxin flow involved in inhibition of root elongation by aluminum? Plant Physiol 122:945–956. doi: 10.1104/pp.122.3.945 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Liang YC, Yang C, Shi H (2006) Effects of silicon on growth and mineral composition of barley grown under toxic levels of aluminum. J Plant Nutr 24:229–243. doi: 10.1081/PLN-100001384 CrossRefGoogle Scholar
  36. Liu J, Chen H, Zhu Q, Shen Y, Wang X, Wang M, Peng C (2015) A novel pathway of direct methane production and emission by eukaryotes including plants, animals and fungi: an overview. Atmos Environ 115:26–35. doi: 10.1016/j.atmosenv.2015.05.019 CrossRefGoogle Scholar
  37. Ma JF, Hiradate S, Nomoto K, Iwashita T, Matsumoto H (1997a) Internal detoxification mechanism of Al in hydrangea (identification of Al from in the leaves). Plant Physiol 113:1033–1039. doi: 10.1104/pp.113.4.1033 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ma JF, Zheng SJ, Matsumoto H, Hiradate S (1997b) Detoxifying aluminium with buckwheat. Nature 390:569–570. doi: 10.1038/37518 CrossRefGoogle Scholar
  39. Ma JF, Hiradate S, Matsumoto H (1998) High aluminum resistance in buckwheat. II. Oxalic acid detoxifies aluminum internally. Plant Physiol 117:753–759. doi: 10.1104/pp.117.3.753 CrossRefPubMedCentralGoogle Scholar
  40. Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278. doi: 10.1016/S1360-1385(01)01961-6 CrossRefPubMedGoogle Scholar
  41. Mariano ED, Pinheiro AS, Garcia EE, Keltjens WG, Jorge RA, Menossi M (2015) Differential aluminium-impaired nutrient uptake along the root axis of two maize genotypes contrasting in resistance to aluminium. Plant Soil 388:323–335. doi: 10.1007/s11104-014-2334-z CrossRefGoogle Scholar
  42. Matsumoto H, Motoda H (2012) Aluminum toxicity recovery processes in root apices. Possible association with oxidative stress. Plant Sci 185–186:1–8. doi: 10.1016/j.plantsci.2011.07.019 CrossRefPubMedGoogle Scholar
  43. Messenger DJ, Mcleod AR, Fry SC (2009) The role of ultraviolet radiation, photosensitizers, reactive oxygen species and ester groups in mechanisms of methane formation from pectin. Plant Cell Environ 32:1–9. doi: 10.1111/j.1365-3040.2008.01892.x CrossRefPubMedGoogle Scholar
  44. Navascués J, Pérez-Rontomé C, Sánchez DH, Staudinger C, Wienkoop S, Rellán-Álvarez R, Becana M (2012) Oxidative stress is a consequence, not a cause, of aluminum toxicity in the forage legume Lotus corniculatus. New Phytol 193:625–636. doi: 10.1111/j.1469-8137.2011.03978.x CrossRefPubMedGoogle Scholar
  45. Nezames CD, Sjogren CA, Barajas JF, Larsen PB (2012) The Arabidopsis cell cycle checkpoint regulators TANMEI/ALT2 and ATR mediate the active process of aluminum-dependent root growth inhibition. Plant Cell 24:608–621. doi: 10.1105/tpc.112.095596 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Nunes-Nesi A, Brito DS, Inostroza-Blancheteau C, Fernie AR, Araújo WL (2014) The complex role of mitochondrial metabolism in plant aluminum resistance. Trends Plant Sci 19:399–407. doi: 10.1016/j.tplants.2013.12.006 CrossRefPubMedGoogle Scholar
  47. Polle E, Konzak CF, Kittrick J (1978) Visual detection of aluminum tolerance levels in wheat by hematoxylin staining of seedling roots. Crop Sci 18:823–827. doi: 10.2135/cropsci1978.0011183X001800050035x CrossRefGoogle Scholar
  48. Rengel Z, Zhang WH (2003) Role of dynamics of intracellular calcium in aluminium-toxicity syndrome. New Phytol 159:295–314. doi: 10.1046/j.1469-8137.2003.00821.x CrossRefGoogle Scholar
  49. Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Ann Rev Plant Mol Biol 52:527–560. doi: 10.1146/annurev.arplant.52.1.527 CrossRefGoogle Scholar
  50. Samma MK, Zhou H, Cui W, Zhu K, Zhang J, Shen W (2017) Methane alleviates copper-induced seed germination inhibition and oxidative stress in Medicago sativa. Biometals 30:97–111. doi: 10.1007/s10534-017-9989-x CrossRefPubMedGoogle Scholar
  51. Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50. doi: 10.1016/j.tplants.2008.10.007 CrossRefPubMedGoogle Scholar
  52. Silva S, Olinda PC, Paula ML, Manuela M, Henrique GP, Conceição S (2010) Differential aluminium changes on nutrient accumulation and root differentiation in an Al sensitive vs. tolerant wheat. Environ Exp Bot 68:91–98. doi: 10.1016/j.envexpbot.2009.10.005 CrossRefGoogle Scholar
  53. Silva-Navas J, Benito C, Téllez-Robledo B, El-Moneim DA, Gallego FJ (2012) The ScAACT1 gene at the Qalt5 locus as a candidate for increased aluminum tolerance in rye (Secale cereale L.). Mol Breed 30:845–856. doi: 10.1007/s11032-011-9668-5 CrossRefGoogle Scholar
  54. Sun P, Tian QY, Chen J, Zhang WH (2010) Aluminium-induced inhibition of root elongation in Arabidopsis is mediated by ethylene and auxin. J Exp Bot 61:347–356. doi: 10.1093/jxb/erp306 CrossRefPubMedGoogle Scholar
  55. Sun A, Wang W, Ye X, Wang Y, Yang X, Ye Z, Sun X, Zhang C (2017) Protective effects of methane-rich saline on rats with lipopolysaccharide-induced acute lung injury. Oxid Med Cell Longe 2017:7430193. doi: 10.1155/2017/74301 Google Scholar
  56. Tesfaye M, Temple SJ, Allan DL, Vance CP, Samac DA (2001) Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. Plant Physiol 127:1836–1844. doi: 10.1104/pp.010376 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Tuboly E, Szabó A, Garab D, Bartha G, Janovszky Á, Erös G, Szabó A, Mohácsi Á, Szabó G, Kaszaki J, Ghyczy M, Boros M (2013) Methane biogenesis during sodium azideinduced chemical hypoxia in rats. Am J Physiol Cell Physiol 304:C207–C214. doi: 10.1152/ajpcell.00300.2012 CrossRefPubMedGoogle Scholar
  58. Wang R (2014) Gasotransmitters: growing pains and joys. Trends Biochem Sci 39:227–232. doi: 10.1016/j.tibs.2014.03.003 CrossRefPubMedGoogle Scholar
  59. Wang H, Chen RF, Iwashita T, Shen RF, Ma JF (2015) Physiological characterization of aluminum tolerance and accumulation in tartary and wild buckwheat. New Phytol 205:273–279. doi: 10.1111/nph.13011 CrossRefPubMedGoogle Scholar
  60. Wu J, Wang R, Ye Z, Sun X, Chen Z, Xia F, Sun Q, Liu L (2015) Protective effects of methane-rich saline on diabetic retinopathy via anti-inflammation in a streptozotocin-induced diabetic rat model. Biochem Biophys Res Commun 466:155–161. doi: 10.1016/j.bbrc.2015.08.121 CrossRefPubMedGoogle Scholar
  61. Xie Y, Mao Y, Xu S, Zhou H, Duan X, Cui W, Zhang J, Xu G (2015) Heme-heme oxygenase 1 system is involved in ammonium tolerance by regulating antioxidant defence in Oryza sativa. Plant Cell Environ 38:129–143. doi: 10.1111/pce.12380 CrossRefPubMedGoogle Scholar
  62. Xu FJ (2011) Pretreatment with H2O2 alleviates aluminum-induced oxidative stress in wheat seedlings. J Integr Plant Biol 53:44–53. doi: 10.1111/j.1744-7909.2010.01008.x CrossRefPubMedGoogle Scholar
  63. Xu S, Jiang Y, Cui W, Jin Q, Zhang Y, Bu D, Fu J, Wang R, Zhou F, Shen W (2017) Hydrogen enhances adaptation of rice seedlings to cold stress via the reestablishment of redox homeostasis mediated by miRNA expression. Plant Soil 414:53–67. doi: 10.1007/s11104-016-3106-8 CrossRefGoogle Scholar
  64. Yu Y, Jin C, Sun C, Wang J, Ye Y, Lu L, Lin X (2015) Elevation of arginine decarboxylase-dependent putrescine production enhances aluminum tolerance by decreasing aluminum retention in root cell walls of wheat. J Hazard Mater 299:280–288. doi: 10.1016/j.jhazmat.2015.06.038 CrossRefPubMedGoogle Scholar
  65. Zheng K, Pan JW, Ye L, Fu Y, Peng HZ, Wan BY, Gu Q, Bian HW, Han N, Wang JH, Kang B, Pan JH, Shao HH, Wang WZ, Zhu MY (2007) Programmed cell death-involved aluminum toxicity in yeast alleviated by antiapoptotic members with decreased calcium signals. Plant Physiol 143:38–49. doi: 10.1104/pp.106.082495 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Zhu K, Cui W, Dai C, Wu M, Zhang J, Zhang Y, Xie Y, Shen W (2016) Methane-rich water alleviates NaCl toxicity during alfalfa seed germination. Environ Exp Bot 129:37–47. doi: 10.1016/j.envexpbot.2015.11.013 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Weiti Cui
    • 1
  • Hong Cao
    • 1
  • Ping Yao
    • 1
  • Jincheng Pan
    • 1
  • Quan Gu
    • 1
  • Sheng Xu
    • 2
  • Ren Wang
    • 2
  • Zhaozeng Ouyang
    • 3
  • Qingya Wang
    • 1
    Email author
  • Wenbiao Shen
    • 1
    Email author
  1. 1.College of Life Sciences, Laboratory Center of Life SciencesNanjing Agricultural UniversityNanjingChina
  2. 2.Institute of BotanyJiangsu Province and Chinese Academy of ScienceNanjingChina
  3. 3.Shuigu Environmental Protection Technological Company LtdShanghaiChina

Personalised recommendations