Advertisement

BioMetals

, Volume 30, Issue 5, pp 663–675 | Cite as

Genome-wide identification, in silico characterization and expression analysis of ZIP-like genes from Trichomonas vaginalis in response to Zinc and Iron

  • K. G. Fernández-Martín
  • M. E. Alvarez-Sánchez
  • V. E. Arana-Argáez
  • L. C. Alvarez-Sánchez
  • J. C. Lara-Riegos
  • J. C. Torres-RomeroEmail author
Article

Abstract

Trace elements such as Zinc and Iron are essential components of metalloproteins and serve as cofactors or structural elements for enzymes involved in several important biological processes in almost all organisms. Because either excess or insufficient levels of Zn and Fe can be harmful for the cells, the homeostatic levels of these trace minerals must be tightly regulated. The Zinc regulated transporter, Iron regulated transporter-like Proteins (ZIP) comprise a diverse family, with several paralogues in diverse organisms and are considered essential for the Zn and Fe uptake and homeostasis. Zn and Fe has been shown to regulate expression of proteins involved in metabolism and pathogenicity mechanisms in the protozoan pathogen Trichomonas vaginalis, in contrast high concentrations of these elements were also found to be toxic for T. vaginalis trophozoites. Nevertheless, Zn and Fe uptake and homeostasis mechanisms is not yet clear in this parasite. We performed a genome-wide analysis and localized the 8 members of the ZIP gene family in T. vaginalis (TvZIP1-8). The bioinformatic programs predicted that the TvZIP proteins are highly conserved and show similar properties to the reported in other ZIP orthologues. The expression patterns of TvZIP1, 3, 5 and 7 were diminished in presence of Zinc, while the rest of the TvZIP genes showed an unchanged profile in this condition. In addition, TvZIP2 and TvZIP4 showed a differential expression pattern in trophozoites growth under different Iron conditions. These results suggest that TvZIP genes encode membrane transporters that may be responsible for the Zn and Fe acquisition in T. vaginalis.

Keywords

Zinc Iron ZIP transporters Trichomonas vaginalis Gene family Expression analysis 

Notes

Acknowledgements

This work was undertaken as part of a research project supported by Grant 237990 (to J.C. Torres-Romero) from Consejo Nacional de Ciencia y Tecnología (CONACYT), México. K.G. Fernández-Martín is a scholarship recipient from CONACYT. We thank MI Jazmín Salett Novelo Castilla, from the Laboratorio de Absorción Atómica, Facultad de Química de la Universidad Autónoma de Yucatán, for their help in the FAAS measurements assays.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this paper.

References

  1. Alvarez-Sánchez ME, Solano-González E, Yañez-Gómez C, Arroyo R (2007) Negative iron regulation of the CP65 cysteine proteinase cytotoxicity in Trichomonas vaginalis. Microbes Infect 9:1597–1605CrossRefPubMedGoogle Scholar
  2. Antala S, Ovchinnikov S, Kamisetty H, Baker D, Dempski RE (2015) Computation and functional studies provide a model for the structure of the Zinc transporter hZIP4. J Biol Chem 290:17796–17805CrossRefPubMedPubMedCentralGoogle Scholar
  3. Arroyo R, Cárdenas-Guerra RE, Figueroa-Angulo EE, Puente-Rivera J, Zamudio-Prieto O, Ortega-López J (2015) Trichomonas vaginalis cysteine proteinases: Iron response in gene expression and proteolytic activity. BioMed Res Int. doi: 10.1155/2015/946787 Google Scholar
  4. Bafaro EM, Antala S, Nguyen TV, Dzul SP, Doyon B, Stemmler TL, Dempski RE (2015) The large intracellular loop of hZIP4 is an intrinsically disordered zinc binding domain. Metallomics 7:1319–1330CrossRefPubMedPubMedCentralGoogle Scholar
  5. Buchan DWA, Minneci F, Nugent TCO, Bryson K, Jones DT (2013) Scalable web services for the PSIPRED protein analysis workbench. Nucl Acids Res 41:W340–W348CrossRefGoogle Scholar
  6. Carvalho S, da Silva RB, Shawki A, Castro H, Lamy M, Eide D et al (2015) LiZIP3 is a cellular zinc transporter that mediates the tightly regulated import of zinc in Leishmania infantum parasites. Mol Microbiol 96:581–595CrossRefPubMedPubMedCentralGoogle Scholar
  7. de Schneider RO, Diehl C, Dos Santos FM, Piffer AC, Garcia AWA, Kulmann MIR et al (2015) Effects of zinc transporters on Cryptococcus gattii virulence. Sci Rep 5:10104CrossRefPubMedCentralGoogle Scholar
  8. Dempski RE (2012) The cation selectivity of the ZIP transporters. Curr Top Membr 69:221–245CrossRefPubMedGoogle Scholar
  9. Dyall SD, Lester DC, Schneider RE, Delgadillo-Correa MG, Plümper E, Martinez A et al (2003) Trichomonas vaginalis Hmp35, a putative pore-forming hydrogenosomal membrane protein, can form a complex in yeast mitochondria. J Biol Chem 278:30548–30561CrossRefPubMedGoogle Scholar
  10. Eide DJ (2006) Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta 1763:711–722CrossRefPubMedGoogle Scholar
  11. Figueroa-Angulo EE, Rendón-Gandarilla FJ, Puente-Rivera J, Calla-Choque JS, Cárdenas-Guerra RE, Ortega-López J et al (2012) The effects of environmental factors on the virulence of Trichomonas vaginalis. Microbes Infect 14:1411–1427CrossRefPubMedGoogle Scholar
  12. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins R, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, New York, pp 571–607CrossRefGoogle Scholar
  13. Grass G, Wong MD, Rosen BP, Smith RL, Rensing C (2002) ZupT is a Zn (II) uptake system in Escherichia coli. J Bacteriol 184:864–866CrossRefPubMedPubMedCentralGoogle Scholar
  14. Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta Biomembr 1465:190–198CrossRefGoogle Scholar
  15. Huynh C, Sacks DL, Andrews NW (2006) A Leishmania amazonensis ZIP family iron transporter is essential for parasite replication within macrophage phagolysosomes. J Exp Med 203:2363–2375CrossRefPubMedPubMedCentralGoogle Scholar
  16. Jesus JBD, Pinheiroa S, Lopes AH, Meyer-Fernandesa JR (2002) An ectonucleotide ATP-diphosphohydrolase activity in Trichomonas vaginalis stimulated by galactose and its possible role in virulence. Z Naturforsch C 57:890–896CrossRefPubMedGoogle Scholar
  17. Kambe T, Yamaguchi-Iwai Y, Sasaki R, Nagao M (2004) Overview of mammalian zinc transporters. Cell Mol Life Sci 61:49–68CrossRefPubMedGoogle Scholar
  18. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580CrossRefPubMedGoogle Scholar
  19. Li S, Zhou X, Huang Y, Zhu L, Zhang S, Zhao Y et al (2013) Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize. BMC Plant Biol 13:114CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ma L, Meng Q, Cheng W, Sung Y, Tang P, Hu S, Yu J (2001) Involvement of the GP63 protease in infection of Trichomonas vaginalis. Parasitol Res 109:71–79CrossRefGoogle Scholar
  21. Maret W (2013) Zinc and the zinc proteome. In: Banci L (ed) Metallomics and the cell. Springer, Netherlands, pp 479–501CrossRefGoogle Scholar
  22. Mondal TK, Ganie SA, Rana MK, Sharma TR (2014) Genome-wide analysis of zinc transporter genes of maize (Zea mays). Plant Mol Biol Rep 32:605–616CrossRefGoogle Scholar
  23. Nadadur SS, Srirama K, Mudipalli A (2008) Iron transport and homeostasis mechanisms: their role in health and disease. Indian J Med Res 128:533–544PubMedGoogle Scholar
  24. Nielsen FH (2002) Trace mineral deficiencies. In: Berdanier CD (ed) Handbook of Nutrition and Foods. CRC Press, Boca Raton, pp 1463–1487Google Scholar
  25. Nies DH (2007) How cells control zinc homeostasis. Science 317:1695–1696CrossRefPubMedGoogle Scholar
  26. Nishida S, Mizuno T, Obata H (2008) Involvement of histidine-rich domain of ZIP family transporter TjZNT1 in metal ion specificity. Plant Physiol Biochem 46:601–606CrossRefPubMedGoogle Scholar
  27. Porcheron G, Garénaux A, Proulx J, Sabri M, Dozois CM (2015) Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence. In: Veyrier F, Cellier M (eds) Metal economy in host-microbe interactions. Frontiers Media SA, Lausanne, pp 172–195Google Scholar
  28. Quintas-Granados L, Villalpando J, Vázquez-Carrillo L, Arroyo R, Mendoza-Hernández G, Alvarez-Sánchez ME (2013) TvMP50 is an immunogenic metalloproteinase during male trichomoniasis. Mol Cell Proteomics 12:1953–1964CrossRefPubMedPubMedCentralGoogle Scholar
  29. Rogers EE, Eide DJ, Guerinot ML (2000) Altered selectivity in an Arabidopsis metal transporter. Proc Natl Acad Sci USA 97:12356–12360CrossRefPubMedPubMedCentralGoogle Scholar
  30. Ryu JS, Choi HK, Min DY, Ha SE, Ahn MH (2001) Effect of iron on the virulence of Trichomonas vaginalis. J Parasitol 87:457–460CrossRefPubMedGoogle Scholar
  31. Sahu T, Boisson B, Lacroix C, Bischoff E, Richier Q, Formaglio P et al (2014) ZIPCO, a putative metal ion transporter, is crucial for Plasmodium liver-stage development. EMBO Mol Med 6:1387–1397CrossRefPubMedPubMedCentralGoogle Scholar
  32. Saier MH, Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G (2016) The transporter classification database (TCDB): recent advances. Nucl Acids Res 44:D372–D379CrossRefPubMedGoogle Scholar
  33. Schultz J, Copley RR, Doerks T, Ponting CP, Bork P (2000) SMART: a web-based tool for the study of genetically mobile domains. Nucl Acids Res 28:231–234CrossRefPubMedPubMedCentralGoogle Scholar
  34. Singh S, Singh G, Singh AK, Gautam G, Farmer R, Lodhi SS, Wadhwa G (2011) Prediction and analysis of paralogous proteins in Trichomonas vaginalis genome. Bioinformation 6:31–34CrossRefPubMedPubMedCentralGoogle Scholar
  35. Torres-Romero JC, Arroyo R (2009) Responsiveness of Trichomonas vaginalis to iron concentrations: evidence for a post-transcriptional iron regulation by an IRE/IRP-like system. Infect Genet Evol 9:1065–1074CrossRefPubMedGoogle Scholar
  36. Tusnády GE, Dobson L, Tompa P (2015) Disordered regions in transmembrane proteins. Biochim Biophys Acta Biomembr 1848:2839–2848CrossRefGoogle Scholar
  37. Wang J, Pantopoulos K (2011) Regulation of cellular iron metabolism. Biochem J 434:365–381CrossRefPubMedPubMedCentralGoogle Scholar
  38. Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins 64:643–651CrossRefPubMedGoogle Scholar
  39. Zhang W, Knutson M (2012) Iron transport ability of the Slc39a (ZIP) family of metal-ion transporters. FASEB J 26(1 Supplement):624–641Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • K. G. Fernández-Martín
    • 1
  • M. E. Alvarez-Sánchez
    • 2
  • V. E. Arana-Argáez
    • 3
  • L. C. Alvarez-Sánchez
    • 4
  • J. C. Lara-Riegos
    • 1
  • J. C. Torres-Romero
    • 1
    Email author
  1. 1.Laboratorio de Bioquímica y Genética MolecularFacultad de Química de la Universidad Autónoma de YucatánMéridaMexico
  2. 2.Posgrado en Ciencias GenómicasUniversidad Autónoma de la Ciudad de México (UACM)Ciudad de MéxicoMexico
  3. 3.Laboratorio de FarmacologíaFacultad de Química de la Universidad Autónoma de YucatánMéridaMexico
  4. 4.Laboratorio de VirologíaCentro de Investigaciones Regionales “Dr, Hideyo Noguchi” de la Universidad Autónoma de YucatánMéridaMexico

Personalised recommendations