Advertisement

BioMetals

, Volume 30, Issue 4, pp 575–587 | Cite as

Synthesis, X-ray crystal structure, DNA/BSA binding, DNA cleavage and cytotoxicity studies of phenanthroline based copper(II)/zinc(II) complexes

  • Qingming WangEmail author
  • Han Mao
  • Wenling Wang
  • Huimin Zhu
  • Lihui Dai
  • Yanli Chen
  • Xinhui TangEmail author
Article

Abstract

Research on copperII 1,10-phenanththroline (phen) derivatives continues to attract interest in the context of structure and biological properties. In this paper, two metal complexes [Cu2(phen)2(μ-Cl)2]Cl2 (1), [Zn(phen)2(H2O)Cl]Cl·4H2O (2) were synthesized and characterized. The crystal structures of 1 and 2 were determined by X-ray diffraction. In order to investigate the biological properties of the prepared complexes, spectroscopic and biological studies were performed. Results of X-ray diffraction showed that 1 and 2 form two types of crystal structures in a given system: dinuclear and mono-nuclear complex. The preliminary study on the DNA cleavage activity has shown that 1 under study behaved as the chemical nucleases. The DNA binding interaction of 1 & 2 with CT-DNA has been investigated by UV–Visible and fluorescence emission spectrometry and the apparent binding constant (K app) values are 5.1 × 104 and 1.2 × 104 M−1, respectively. In addition, fluorescence spectrometry of bovine serum albumin (BSA) with 1 & 2 showed that the quenching mechanism might be a static quenching procedure with one binding sites for BSA. In addition, the cytotoxicity of 1 in vitro on tumor cells lines (MCF-7, HepG2 and HT29) was examined by MTT and showed better antitumor effect on the tested cells.

Keywords

Potential anticancer agents DNA binding Bull serum albumin (BSA) binding DNA cleavage Binding modes Metals complexes 

Abbreviations

DNA

Deoxyribonucleic acid

BSA

Bovine serum albumin

Phen

1,10-phenanthroline

EB

Ethidium bromide

MTT

3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide

1

[Cu2(phen)2(μ-Cl)2]Cl2

2

[Zn(phen)2(H2O)Cl]Cl·4H2O

Notes

Acknowledgements

This work were financially supported by the National Natural Science Foundation for Young Scientists of China (21301150, 21571154), the Post-Doctoral Foundation of Jiangsu Provincial (1501032B), the Six Taleng Peak Project in Jiangsu Province (SWYY-063) and sponsored by Qing Lan Project of Jiangsu Provice.

References

  1. Abuhujleh AL (1997) Synthesis and characterization of copper-ibuprofenate complexes with 2,2′-bipyridine and 1,10-phenanthrolines and their hydrolytic activities in phosphate diester cleavage. Polyhedron 16:733–740CrossRefGoogle Scholar
  2. Anbu S, Killivalavan A, Alegria EC, Mathan G, Kandaswamy M (2013) Effect of 1, 10-phenanthroline on DNA binding, DNA cleavage, cytotoxic and lactate dehydrogenase inhibition properties of Robson type macrocyclic dicopper (II) complex. J Coord Chem 66(22):3989–4003CrossRefGoogle Scholar
  3. Annaraj B, Neelakantan MA (2015) Synthesis, crystal structure, spectral characterization and biological exploration of water soluble Cu(II) complexes of vitamin B6 derivative. Eur J Med Chem 102:1–8CrossRefPubMedGoogle Scholar
  4. Bertrand B, Casini A (2014) A golden future in medicinal inorganic chemistry: the promise of anticancer gold organometallic compounds. Dalton Trans 43:4209–4219CrossRefPubMedGoogle Scholar
  5. Bhat SS, Kumbhar AA, Heptullah H, Khan AA, Gobre VV, Gejji SP, Puranik VG (2011) Synthesis, electronic structure, DNA and protein binding, DNA cleavage, and anticancer activity of fluorophore-labeled copper (II) complexes. Inorg Chem 50:545–558CrossRefPubMedGoogle Scholar
  6. Brabec V, Griffth DM, Kisova A, Kostrhunova H, Zerzankova L, Marmion CJ, Kasparkova J (2012) Valuable insight into the anticancer activity of the platinum-histone deacetylase inhibitor conjugate, cis-[Pt(NH3)2malSAHA-2H)]. Mol Pharm 9:1990–1999CrossRefPubMedGoogle Scholar
  7. Brewer GJ (2015) Copper-2 ingestion, plus increased meat eating leading to increased copper absorption, are major factors behind the current epidemic of alzheimer’s disease. Nutrients 7:10053–10064CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bruker, (2000) SMART (Version 5.0) and SAINT (Version 6.02), Bruker AXS Inc., Madison, Wisconsin, USAGoogle Scholar
  9. Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB (1987) Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of radiosensitivity. Cancer Res 47:936–942PubMedGoogle Scholar
  10. D’Ambrosi N, Rossi L (2015) Copper at synapse: release, binding and modulation of neurotransmission. Neurochem Int 90:36–45CrossRefPubMedGoogle Scholar
  11. David T, Kubicek V, Gutten O, Lubal P, Kotek J, Pietzsch HJ, Rulisek L, Hermann P (2015) Cyclam Derivatives with a Bis(phosphinate) or a Phosphinato-Phosphonate pendant arm: ligands for fast and efficient copper(II) complexation for nuclear medical applications. Inorg Chem 54:11751–11766CrossRefPubMedGoogle Scholar
  12. Duskova K, Sierra S, Arias-Perez MS, Gude L (2016) Human telomeric G-quadruplex DNA interactions of N-phenanthroline glycosylamine copper(II) complexes. Bioorg Med Chem 24:33–41CrossRefPubMedGoogle Scholar
  13. Ferreira BJ, Brandao P, Meireles M, Martel F, Correia-Branco A, Fernandes DM, Santos TM, Felix V (2016) Synthesis, structural characterization, cytotoxic properties and DNA binding of a dinuclear copper(II) complex. J Inorg Biochem 161:9–17CrossRefPubMedGoogle Scholar
  14. Frezza M, Hindo S, Chen D, Davenport A, Schmitt S, Tomco D, Dou QP (2016) Novel metals and metal complexes as platforms for cancer therapy. Curr Phar Des 16(16):1813–1825CrossRefGoogle Scholar
  15. Fu XB, Zhang JJ, Liu DD, Gan Q, Gao HW, Mao ZW, Le XY (2015) Cu (II)-dipeptide complexes of 2-(4′-thiazolyl) benzimidazole: synthesis, DNA oxidative damage, antioxidant and in vitro antitumor activity. J Inorg Biochem 143:77–87CrossRefPubMedGoogle Scholar
  16. Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M, Kroemer G (2012) Molecular mechanisms of cisplatin resistance. Oncogene 31:1869–1883CrossRefPubMedGoogle Scholar
  17. Ganeshpandian M, Loganathan R, Ramakrishnan S, Riyasdeen A, Akbarsha MA, Palaniandavar M (2013) Interaction of mixed ligand copper(II) complexes with CT-DNA and BSA: effect of primary ligand hydrophobicity on DNA and protein binding and cleavage and anticancer activities. Polyhedron 52:924–938CrossRefGoogle Scholar
  18. Gao CY, Ma ZY, Zhang YP, Li ST, Gu W, Liu X, Tian JL, Xu JY, Zhao JZ, Yan SP (2015) Four related mixed-ligand nickel(II) complexes: effect of steric encumbrance on the structure, DNA/BSA binding, DNA cleavage and cytotoxicity. RSC Adv 5:30768–30779CrossRefGoogle Scholar
  19. Gay M, Montaña ÁM, Batalla C, Mesas JM, Alegre MT (2015) Design, synthesis and SAR studies of novel 1, 2-bis (aminomethyl) cyclohexane platinum (II) complexes with cytotoxic activity. Studies of interaction with DNA of iodinated seven-membered 1, 4-diaminoplatinocycles. J Inorg Biochem 142:15–27CrossRefPubMedGoogle Scholar
  20. Gohel A, McCarthy MB, Gronowicz G (1999) Estrogen prevents glucocorticoid-induced apoptosis in osteoblasts in vivo and in vitro. Endocrinology 140:5339–5347CrossRefPubMedGoogle Scholar
  21. Graham LA, Suryadi J, West TK, Kucera GL, Bierbach U (2012) Synthesis, aqueous reactivity, and biological evaluation of carboxylic acid ester-functionalized platinum-acridine hybrid anticancer agents. J Med Chem 55:7817–7827CrossRefPubMedPubMedCentralGoogle Scholar
  22. Grzegorz P (2006) Luminescent metal-ligand complexes as probes of macromolecular interactions and biopolymer dynamics. Arch Biochem Biophys 453:54–62CrossRefGoogle Scholar
  23. Guo XJ, Zhang L, Sun XD, Han XW, Guo C, Kang PL (2009) Spectroscopic studies on the interaction between sodium ozagrel and bovine serum albumin. J Mol Struct 928:114–120CrossRefGoogle Scholar
  24. Inci D, Aydin R, Vatan O, Sevgi T, Yilmaz D, Zorlu Y, Yerli Y, Cosut B, Demirkan E, Cinkilic N (2017) Synthesis and crystal structures of novel copper(II) complexes with glycine and substituted phenanthrolines: reactivity towards DNA/BSA and in vitro cytotoxic and antimicrobial evaluation. J Biol Inorg Chem 22(1):61–85CrossRefPubMedGoogle Scholar
  25. Jamieson ER, Lippard SJ (1999) Structure, recognition, and processing of cisplatin-DNA adducts. Chem Rev 99(9):2467–2498CrossRefPubMedGoogle Scholar
  26. Kelland L (2007) The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 7(8):573–584CrossRefPubMedGoogle Scholar
  27. Kishimoto S, Yasuda M, Suzuki R, Fukushima S (2016) Intracellular uptake of an antitumor-active azole-bridged dinuclear platinum (II) complex in cisplatin-resistant tumor cells. Biometals 29(6):1075–1083CrossRefPubMedGoogle Scholar
  28. Kong LL, Gao S, Huo LH, Ng SW (2008) Aquachloridobis (1, 10-phenanthroline-κ2 N, N′) zinc (II) chloride N, N-dimethylformamide solvate. Acta Cryst E 64:m423CrossRefGoogle Scholar
  29. Krikavova R, Vanco J, Travnicek Z, Hutyra J, Dvorak Z (2016) Design and characterization of highly in vitro antitumor active ternary copper(II) complexes containing 2′-hydroxychalcone ligands. J Inorg Biochem 163:8–17CrossRefPubMedGoogle Scholar
  30. Kuckova L, Jomova K, Svorcova A, Valko M, Segl’a P, Moncol’ J, Kozisek J (2015) Synthesis, Crystal Structure, Spectroscopic Properties and Potential Biological Activities of Salicylate-Neocuproine Ternary Copper(II) Complexes. Molecules 20:2115–2137CrossRefPubMedGoogle Scholar
  31. LePecq JB, Paoletti C (1967) A fluorescent complex between ethidium bromide and nucleic acids: physical–chemical characterization. J Mol Biol 27(1):87–106CrossRefPubMedGoogle Scholar
  32. Li GY, Du KJ, Wang JQ, Liang JW, Kou JF, Hou XJ, Ji LN, Chao H (2013) Synthesis, crystal structure, DNA interaction and anticancer activity of tridentate copper(II) complexes. J Inorg Biochem 119:43–53CrossRefPubMedGoogle Scholar
  33. Martin-Santos C, Michelucci E, Marzo T, Messori L, Szumlas P, Bednarski PJ, Mas-Balleste R, Navarro-Ranninger C, Cabrera S, Aleman J (2015) Gold(III) complexes with hydroxyquinoline, aminoquinoline and quinoline ligands: synthesis, cytotoxicity, DNA and protein binding studies. J Inorg Biochem 153:339–345CrossRefPubMedGoogle Scholar
  34. Mathan KS, Dhahagani K, Rajesh J, Nehru K, Annaraj J, Chakkaravarthi G, Rajagopal G (2013) Synthesis, characterization, structural analysis and DNA binding studies of nickel(II)-triphenylphosphine complex of ONS donor ligand—Multisubstituted thiosemicarbazone as highly selective sensor for fluoride ion. Polyhedron 59:58–68CrossRefGoogle Scholar
  35. Miller MT, Karpishin TB (1999) Phenylethynyl substituent effects on the photophysics and electrochemistry of [Cu(dpp)2]+(dpp = 2, 9-Diphenyl-1,10-phenanthroline). Inorg Chem 38(23):5246–5249CrossRefGoogle Scholar
  36. Molphy Z, Slator C, Chatgilialoglu C, Kellett A (2015) DNA oxidation profiles of copper phenanthrene chemical nucleases. Front Chem 3:1–9CrossRefGoogle Scholar
  37. Muhammad N, Guo Z (2014) Metal-based anticancer chemotherapeutic agents. Curr Opin Chem Biol 19:144–153CrossRefPubMedGoogle Scholar
  38. Navas F, Perfahl S, Garino C, Salassa L, Novakova O, Navarro-Ranninger C, Bednarski PJ, Malina J, Quiroga AG (2015) Increasing DNA reactivity and in vitro antitumor activity of trans diiodido Pt(II) complexes with UVA light. J Inorg Biochem 153:211–218CrossRefPubMedGoogle Scholar
  39. Raman N, Mahalakshmi R, Arun T, Packianathan S, Rajkumar R (2014) Metal based pharmacologically active complexes of Cu (II), Ni (II) and Zn (II): synthesis, spectral, XRD, antimicrobial screening, DNA interaction and cleavage investigation. J Photochem Photobiol, B 138:211–222CrossRefGoogle Scholar
  40. Santini C, Pellei M, Gandin V, Porchia M, Tisato F, Marzano C (2013) Advances in copper complexes as anticancer agents. Chem Rev 114(1):815–862CrossRefPubMedGoogle Scholar
  41. Sava G, Jaouen G, Hillard EA, Bergamo A (2012) Targeted therapy vs. DNA-adduct formation-guided design: thoughts about the future of metal-based anticancer drugs. Dalton Trans 41:8226–8234CrossRefPubMedGoogle Scholar
  42. Saxena M, Dhimole LK (2006) Utilization and value addition of copper tailing as an extender for development of paints. J Hazard Mater 129:50–57CrossRefPubMedGoogle Scholar
  43. Schneider S, Reiβner T, Ziv O, Livneh Z, Carell T (2010) Translesion synthesis of 1,3-GTG cisplatin DNA lesions. Chem Bio Chem 11:1521–1524CrossRefPubMedGoogle Scholar
  44. Sevilla P, Rivas JM, GarcÍa-Blanco F, García-Ramos JV, Sánchez-Cortés S (2007) Identification of the antitumoral drug emodin binding sites in bovine serum albumin by spectroscopic methods. Biochimica Biophysica Acta 1774:1359–1369CrossRefGoogle Scholar
  45. Sheldrick GM (1997) SHELXS 97 and SHELXL 97. University of Göttingen, Germany, p 1997Google Scholar
  46. Sheldrick GM (2000) SADABS. University of Göttingen, GermanyGoogle Scholar
  47. Shi XL, Li XW, Gui MY, Zhou HY, Yang RJ, Zhang HQ, Jin JR (2010) Systematic study on the preparation of BSA nanoparticles. J Lumin 130:637–644CrossRefGoogle Scholar
  48. Silva PB, Bonifacio BV, Frem RC, Godoy Netto AV, Mauro AE, Ferreira AM, Lopes Ede O, Raddi MS, Bauab TM, Pavan FR, Chorilli M (2015) A Nanostructured lipid system as a strategy to improve the in vitro antibacterial activity of Copper(II) complexes. Molecules 20:22534–22545CrossRefGoogle Scholar
  49. Sureshbabu P, Tjakraatmadja AAJS, Hanmandlu C, Elavarasan K, Kulak N, Sabiah S (2015) Mononuclear Cu(II) and Zn(II) complexes with a simple diamine ligand: synthesis, structure, phosphodiester binding and DNA cleavage studies. Rsc Adv 5:22405–22418CrossRefGoogle Scholar
  50. Ta L (2006) Neurotoxicity of oxaliplatin and cisplatin for dorsal root ganglion neurons correlates with platinum–DNA binding. Neurotoxicology 27:992–1002CrossRefPubMedGoogle Scholar
  51. Tabassum S, Zaki M, Ahmad M, Afzal M, Srivastav S, Srikrishna S, Arjmand F (2014) Synthesis and crystal structure determination of copper(II)-complex: in vitro DNA and HSA binding, pBR322 plasmid cleavage, cell imaging and cytotoxic studies. Eur J Med Chem 83:141–154CrossRefPubMedGoogle Scholar
  52. Tabassuma S, Asima A, Arjmanda F, Afzala M, Bagchi V (2012) Synthesis and characterization of copper(II) and zinc(II)-based potential chemotherapeutic compounds: their biological evaluation viz. DNA binding profile, cleavage and antimicrobial activity. Eur J Med Chem 58:308–316CrossRefGoogle Scholar
  53. Tabrizi L, Fooladivanda M, Chiniforoshan H (2016) Copper(II), cobalt(II) and nickel(II) complexes of juglone: synthesis, structure, DNA interaction and enhanced cytotoxicity. Biometals 29(6):981–993CrossRefPubMedGoogle Scholar
  54. Tamayo LV, Gouvea LR, Sousa AC, Albuquerque RM, Teixeira SF, de Azevedo RA, Louro SR, Ferreira AK, Beraldo H (2016) Copper(II) complexes with naringenin and hesperetin: cytotoxic activity against A 549 human lung adenocarcinoma cells and investigation on the mode of action. Biometals 29(1):39–52Google Scholar
  55. Tantaru G, Nechifor M, Apostu M, Vieriu M, Panainte AD, Bibire N (2015) Antinflammatory Activity of an N, N’-Disalicylidenemethylendiamine-Derived schiff bis base and its Copper(II) complex. Rev Med Chir Soc Med Nat Iasi 119:1195–1198PubMedGoogle Scholar
  56. Tardito S, Marchio L (2009) Copper compounds in anticancer strategies. Curr Med Chem 16(11):1325–1348CrossRefPubMedGoogle Scholar
  57. Tarushi A, Perontsis S, Hatzidimitriou AG, Papadopoulos AN, Kessissoglou DP, Psomas G (2015) Copper(II) complexes with the non-steroidal anti-inflammatory drug tolfenamic acid: structure and biological features. J Inorg Biochem 149:68–79CrossRefPubMedGoogle Scholar
  58. Tolia C, Papadopoulos AN, Raptopoulou CP, Psycharis V, Garino C, Salassa L, Psomas G (2013) Copper(II) interacting with the non-steroidal antiinflammatory drug flufenamic acid: structure, antioxidant activity and binding to DNA and albumins. J Inorg Biochem 123:53–65CrossRefPubMedGoogle Scholar
  59. Tummalapalli K, Vasavi CS, Munusami P, Pathak M, Balamurali MM (2017) Evaluation of DNA/Protein interactions and cytotoxic studies of copper(II) complexes incorporated with N, N donor ligands and terpyridine ligand. Int J Biol Macromol 95:1254–1266CrossRefPubMedGoogle Scholar
  60. Wang QM, Lu LP, Yuan CX, Pei K, Liu ZW, Guo ML, Zhu ML (2010) Potent inhibition of protein tyrosine phosphatase 1B by copper complexes: implications for copper toxicity in biological systems. Chem Commun 46:3547–3549CrossRefGoogle Scholar
  61. Wang QM, Lu LP, Zhu ML, Yuan CX, Xing S, Fu XQ (2011) Potent inhibition of protein tyrosine phosphatases by quinquedentate binuclear copper complexes: synthesis, characterization, and biological activities. Dalton Trans 40:12926–12934CrossRefPubMedGoogle Scholar
  62. Wang QM, Yang L, Wu JH, Wang H, Song JL, Tang XH (2017) Four mononuclear Platinum(II) complexes: synthesize, DNA/BSA binding, DNA cleavage and cytotoxicity. Biometals 30(1):17–26CrossRefPubMedGoogle Scholar
  63. Xiao Y, Wang Q, Huang Y, Ma X, Xiong X, Li H (2016) Synthesis, structure, and biological evaluation of a copper(ii) complex with fleroxacin and 1,10-phenanthroline. Dalton Trans 45:10928–10935CrossRefPubMedGoogle Scholar
  64. Yang L, Li X, Li X, Yan S, Ren Y, Wang M, Liu P, Dong Y, Zhang C (2016) [Cu(phen)2](2+) acts as electrochemical indicator and anchor to immobilize probe DNA in electrochemical DNA biosensor. Anal Biochem 492:56–62CrossRefPubMedGoogle Scholar
  65. Yuan CX, Zhu ML, Wang QM, Lu LP, Xing S, Fu XQ, Jiang Z, Zhang S, Li ZW, Li ZY, Zhu RT, Ma L, Xu LQ (2012) Potent and selective inhibition of t-cell protein tyrosine phosphatase(TCPTP) by a dinuclear Copper(II) complex. Chem Commun 48:1153–1155CrossRefGoogle Scholar
  66. Zeglis BM, Divilov V, Lewis JS (2011) Role of metalation in the topoisomerase IIalpha inhibition and antiproliferation activity of a series of alpha-heterocyclic-N4-substituted thiosemicarbazones and their Cu(II) complexes. J Med Chem 54:2391–2398CrossRefPubMedPubMedCentralGoogle Scholar
  67. Zhao XF, Ouyang Y, Liu YZ, Su QJ, Tian H, Xie CZ, Xu JY (2014) Two polypyridyl copper(II) complexes: synthesis, crystal structure and interaction with DNA and serum protein in vitro. New J Chem 38:955–965CrossRefGoogle Scholar
  68. Zhou XY, Zhang T, Ren L, Wu JJ, Wang W, Liu JX (2016) Copper elevated embryonic hemoglobin through reactive oxygen species during zebrafish erythrogenesis. Aquat Toxicol 175:1–11CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of Pharmacy, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental ProtectionYancheng Teachers’ UniversityYanchengPeople’s Republic of China
  2. 2.College of Biotechnology and Pharmaceutical EngineeringNanjing University of TechnologyNanjingPeople’s Republic of China

Personalised recommendations