BioMetals

, Volume 29, Issue 2, pp 287–298 | Cite as

The zinc transporter ZNT3 co-localizes with insulin in INS-1E pancreatic beta cells and influences cell survival, insulin secretion capacity, and ZNT8 expression

  • Kamille Smidt
  • Agnete Larsen
  • Andreas Brønden
  • Karen S. Sørensen
  • Julie V. Nielsen
  • Jeppe Praetorius
  • Pia M. Martensen
  • Jørgen Rungby
Article

Abstract

Zinc trafficking in pancreatic beta cells is tightly regulated by zinc transporting (ZNTs) proteins. The role of different ZNTs in the beta cells is currently being clarified. ZNT8 transports zinc into insulin granules and is critical for a correct insulin crystallization and storage in the granules whereas ZNT3 knockout negatively affects beta cell function and survival. Here, we describe for the first time the sub-cellular localization of ZNT3 by immuno-gold electron microscopy and supplement previous data from knockout experiments with investigations of the effect of ZNT3 in a pancreatic beta cell line, INS-1E overexpressing ZNT3. In INS-1E cells, we found that ZNT3 was abundant in insulin containing granules located close to the plasma membrane. The level of ZNT8 mRNA was significantly decreased upon over-expression of ZNT3 at different glucose concentrations (5, 11 and 21 mM glucose). ZNT3 over-expression decreased insulin content and insulin secretion whereas ZNT3 over-expression improved the cell survival after 24 h at varying glucose concentrations (5, 11 and 21 mM). Our data suggest that ZNT3 and ZNT8 (known to regulate insulin secretion) have opposite effects on insulin synthesis and secretion possibly by a transcriptional co-regulation since mRNA expression of ZNT3 was inversely correlated to ZNT8 and ZNT3 over-expression reduced insulin synthesis and secretion in INS-1E cells. ZNT3 over-expression improved cell survival.

Keywords

ZNT3 SLC30A3 ZNT8 Localization Insulin secretion Beta cell survival 

Notes

Acknowledgments

INS-1E cells were kindly provided by Professor Emeritus Claes Wollheim and Professor Pierre Maechler, University of Geneva, Switzerland. We want to thank laboratory technician Elin Carstensen for help with the insulin assay, Else-Merete Løcke for assistance in electron microscopy and immunofluorescence, and laboratory technician Helle Zibrandtsen for help with the immunoblotting analysis. The study was supported by AP Møller and wife Chastine Mc-Kinney Møller Foundation and Desirée and Niels Ydes Foundation. Preliminary reports of these findings have previously been published in abstract form (Smidt et al. 2013) and reported at the 49th EASD Annual Meeting in Barcelona in 2013.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adlard PA, Parncutt JM, Finkelstein DI, Bush AI (2010) Cognitive loss in zinc transporter-3 knock-out mice: a phenocopy for the synaptic and memory deficits of Alzheimer’s disease? J Neurosci 30:1631–1636CrossRefPubMedGoogle Scholar
  2. Boquist L, Falkmer S, Havu N, Pihl E (1968) Insulin biosynthesis, storage and secretion. Pancreatic-islet tissue and heavy metals—some ultrastructural and experimental observations. Lakartidningen 65:3603–3607PubMedGoogle Scholar
  3. Bozym RA, Chimienti F, Giblin LJ et al (2010) Free zinc ions outside a narrow concentration range are toxic to a variety of cells in vitro. Exp Biol Med (Maywood) 235:741–750CrossRefGoogle Scholar
  4. Chimienti F, Devergnas S, Favier A, Seve M (2004) Identification and cloning of a beta-cell specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 53:2330–2337CrossRefPubMedGoogle Scholar
  5. Chimienti F, Devergnas S, Pattou F, Schuit F, Garcia-Cuenca R, Vandewalle B, Kerr-Conte J, Van Lommel L, Grunwald D, Favier A, Seve M (2006) In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. J Cell Sci 119:4199–4206CrossRefPubMedGoogle Scholar
  6. Cousins RJ, Liuzzi JP, Lichten LA (2006) Mammalian zinc transport, trafficking, and signals. J Biol Chem 281:24085–24089CrossRefPubMedGoogle Scholar
  7. Doering P, Stoltenberg M, Penkowa M, Rungby J, Larsen A, Danscher G (2010) Chemical blocking of zinc ions in CNS increases neuronal damage following traumatic brain injury (TBI) in mice. PLoS One 5:e10131CrossRefPubMedPubMedCentralGoogle Scholar
  8. Emdin SO, Dodson GG, Cutfield JM, Cutfield SM (1980) Role of zinc in insulin biosynthesis. Some possible zinc–insulin interactions in the pancreatic B-cell. Diabetologia 19:174–182CrossRefPubMedGoogle Scholar
  9. Flannick J, Thorleifsson G, Beer NL et al (2014) Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat Genet 46:357–363CrossRefPubMedPubMedCentralGoogle Scholar
  10. Fu Y, Tian W, Pratt EB, Dirling LB, Shyng SL, Meshul CK, Cohen DM (2009) Down-regulation of ZnT8 expression in INS-1 rat pancreatic beta cells reduces insulin content and glucose-inducible insulin secretion. PLoS One 4:e5679CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fukunaka A, Suzuki T, Kurokawa Y, Yamazaki T, Fujiwara N, Ishihara K, Migaki H, Okumura K, Masuda S, Yamaguchi-Iwai Y, Nagao M, Kambe T (2009) Demonstration and characterization of the heterodimerization of ZnT5 and ZnT6 in the early secretory pathway. J Biol Chem 284:30798–30806CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gerber PA, Bellomo EA, Hodson DJ, Meur G, Solomou A, Mitchell RK, Hollinshead M, Chimienti F, Bosco D, Hughes SJ, Johnson PR, Rutter GA (2014) Hypoxia lowers SLC30A8/ZnT8 expression and free cytosolic Zn2+ in pancreatic beta cells. Diabetologia 57:1635–1644CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gilda JE, Gomes AV (2013) Stain-free total protein staining is a superior loading control to beta-actin for western blots. Anal Biochem 440:186–188CrossRefPubMedGoogle Scholar
  14. Gold G, Grodsky GM (1984) Kinetic aspects of compartmental storage and secretion of insulin and zinc. Experientia 40:1105–1114CrossRefPubMedGoogle Scholar
  15. Huang L, Kirschke CP, Lay Y-AE, Levy LB, Lamirande DE, Zhang PH (2012) Znt7-null mice are more susceptible to diet-induced glucose intolerance and insulin resistance. J Biol Chem 287:33883–33896CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kambe T, Narita H, Yamaguchi-Iwai Y, Hirose J, Amano T, Sugiura N, Sasaki R, Mori K, Iwanaga T, Nagao M (2002) Cloning and characterization of a novel mammalian zinc transporter, zinc transporter 5, abundantly expressed in pancreatic beta cells. J Biol Chem 277:19049–19055CrossRefPubMedGoogle Scholar
  17. Lemaire K, Ravier MA, Schraenen A, Creemers JW, Van de Plas R, Granvik M, Van Lommel L, Waelkens E, Chimienti F, Rutter GA, Gilon P, in’t Veld PA, Schuit FC (2009) Insulin crystallization depends on zinc transporter ZnT8 expression, but is not required for normal glucose homeostasis in mice. Proc Natl Acad Sci USA 106:14872–14877CrossRefPubMedPubMedCentralGoogle Scholar
  18. Nicolson TJ, Bellomo EA, Wijesekara N et al (2009) Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes 58:2070–2083CrossRefPubMedPubMedCentralGoogle Scholar
  19. Nolan CJ, Damm P, Prentki M (2011) Type 2 diabetes across generations: from pathophysiology to prevention and management. Lancet 378:169–181CrossRefPubMedGoogle Scholar
  20. Nygaard SB, Larsen A, Knuhtsen A, Rungby J, Smidt K (2014) Effects of zinc supplementation and zinc chelation on in vitro β-cell function in INS-1E cells. BMC Res Notes 7:84CrossRefPubMedPubMedCentralGoogle Scholar
  21. Nygaard SB, Lund NS, Larsen A, Pedersen N, Rungby J, Smidt K (2015) Exogenous metallothionein potentiates the insulin response at normal glucose concentrations in INS-1E beta-cells without disturbing intracellular ZnT8 expression. Basic Clin Pharmacol Toxicol 116:173–177CrossRefPubMedGoogle Scholar
  22. Palmiter RD, Cole TB, Quaife CJ, Findley SD (1996) ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc Natl Acad Sci USA 93:14934–14939CrossRefPubMedPubMedCentralGoogle Scholar
  23. Patrushev N, Seidel-Rogol B, Salazar G (2012) Angiotensin II requires zinc and downregulation of the zinc transporters ZnT3 and ZnT10 to induce senescence of vascular smooth muscle cells. PLoS One 7:e33211CrossRefPubMedPubMedCentralGoogle Scholar
  24. Petersen AB, Smidt K, Magnusson NE, Moore F, Egefjord L, Rungby J (2011) siRNA-mediated knock-down of ZnT3 and ZnT8 affects production and secretion of insulin and apoptosis in INS-1E cells. APMIS 119:93–102CrossRefPubMedGoogle Scholar
  25. Plum LM, Rink L, Haase H (2010) The essential toxin: impact of zinc on human health. Int J Environ Res Public Health 7:1342–1365CrossRefPubMedPubMedCentralGoogle Scholar
  26. Prasad AS (2012) Discovery of human zinc deficiency: 50 years later. J Trace Elem Med Biol 26:66–69CrossRefPubMedGoogle Scholar
  27. Rungby J (2010) Zinc, zinc transporters and diabetes. Diabetologia 53:1549–1551CrossRefPubMedGoogle Scholar
  28. Salazar G, Love R, Werner E, Doucette MM, Cheng S, Levey A, Faundez V (2004) The zinc transporter ZnT3 interacts with AP-3 and it is preferentially targeted to a distinct synaptic vesicle subpopulation. Mol Biol Cell 15:575–587CrossRefPubMedPubMedCentralGoogle Scholar
  29. Salazar G, Falcon-Perez JM, Harrison R, Faundez V (2009) SLC30A3 (ZnT3) oligomerization by dityrosine bonds regulates its subcellular localization and metal transport capacity. PLoS One 4:e5896CrossRefPubMedPubMedCentralGoogle Scholar
  30. Scott DA, Fisher AM (1938) The insulin and the zinc content of normal and diabetic pancreas. J Clin Investig 17:725–728CrossRefPubMedPubMedCentralGoogle Scholar
  31. Sladek R, Rocheleau G, Rung J et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445:881–885CrossRefPubMedGoogle Scholar
  32. Smidt K, Rungby J (2012) ZnT3: a zinc transporter active in several organs. Biometals 25:1–8CrossRefPubMedGoogle Scholar
  33. Smidt K, Wogensen L, Brock B, Schmitz O, Rungby J (2006) Real-time PCR: housekeeping genes in the INS-1E beta-cell line. Horm Metab Res 38:8–11CrossRefPubMedGoogle Scholar
  34. Smidt K, Jessen N, Petersen AB et al (2009) SLC30A3 responds to glucose- and zinc variations in beta-cells and is critical for insulin production and in vivo glucose-metabolism during beta-cell stress. PLoS One 4:e5684CrossRefPubMedPubMedCentralGoogle Scholar
  35. Smidt K, Sørensen K, Larsen A, Prætorius J, Martensen PM, Rungby J (2013) Insulin secretion and ZnT8 gene expression are decreased by ZnT3 overexpression. Diabetologia 56(Suppl 1):A478 (Abstract) Google Scholar
  36. Søndergaard LG, Brock B, Stoltenberg M, Flyvbjerg A, Schmitz O, Smidt K, Danscher G, Rungby J (2005) Zinc fluxes during acute and chronic exposure of INS-1E cells to increasing glucose levels. Horm Metab Res 37:133–139CrossRefPubMedGoogle Scholar
  37. Souza SC, Qiu L, Inouye KE, Roix JJ, Chen H (2008) Zinc transporter ZnT-8 regulates insulin and glucagon secretion in Min6 and aTC1-9 pancreatic cell lines. Diabetologia 51(Suppl 1):A501 (Abstract) Google Scholar
  38. Suzuki T, Ishihara K, Migaki H, Ishihara K, Nagao M, Yamaguchi-Iwai Y, Kambe T (2005) Two different zinc transport complexes of cation diffusion facilitator proteins localized in the secretory pathway operate to activate alkaline phosphatases in vertebrate cells. J Biol Chem 280:30956–30962CrossRefPubMedGoogle Scholar
  39. Tamaki M, Fujitani Y, Hara A et al (2013) The diabetes-susceptible gene SLC30A8/ZnT8 regulates hepatic insulin clearance. J Clin Investig 123:4513–4524CrossRefPubMedPubMedCentralGoogle Scholar
  40. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034CrossRefPubMedPubMedCentralGoogle Scholar
  41. Wijesekara N, Dai FF, Hardy AB, Giglou PR, Bhattacharjee A, Koshkin V, Chimienti F, Gaisano HY, Rutter GA, Wheeler MB (2010) Beta cell-specific Znt8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion. Diabetologia 53:1656–1668CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kamille Smidt
    • 1
    • 2
  • Agnete Larsen
    • 1
  • Andreas Brønden
    • 4
  • Karen S. Sørensen
    • 1
  • Julie V. Nielsen
    • 1
  • Jeppe Praetorius
    • 1
  • Pia M. Martensen
    • 3
  • Jørgen Rungby
    • 1
    • 4
    • 5
  1. 1.Department of BiomedicineAarhus UniversityÅrhusDenmark
  2. 2.Department of Clinical MedicineAarhus UniversityÅrhus NDenmark
  3. 3.Department of Molecular Biology and GeneticsAarhus UniversityÅrhusDenmark
  4. 4.Center for Diabetes Research, Gentofte HospitalUniversity of CopenhagenCopenhagenDenmark
  5. 5.Department of Clinical PharmacologyRigshospitaletCopenhagenDenmark

Personalised recommendations