Advertisement

BioMetals

, Volume 28, Issue 5, pp 913–928 | Cite as

Iron oxides in human spleen

  • Martin Kopáni
  • Marcel Miglierini
  • Adriana Lančok
  • Július Dekan
  • Mária Čaplovicová
  • Ján Jakubovský
  • Roman Boča
  • Hedviga Mrazova
Article

Abstract

Iron is an essential element for fundamental cell functions and a catalyst for chemical reactions. Three samples extracted from the human spleen were investigated by scanning (SEM) and transmission electron microscopy (TEM), Mössbauer spectrometry (MS), and SQUID magnetometry. The sample with diagnosis of hemosiderosis (H) differs from that referring to hereditary spherocytosis and the reference sample. SEM reveals iron-rich micrometer-sized aggregate of various structures—tiny fibrils in hereditary spherocytosis sample and no fibrils in hemochromatosis. Hematite and magnetite particles from 2 to 6 μm in TEM with diffraction in all samples were shown. The SQUID magnetometry shows different amount of diamagnetic, paramagnetic and ferrimagnetic structures in the tissues. The MS results indicate contribution of ferromagnetically split sextets for all investigated samples. Their occurrence indicates that at least part of the sample is magnetically ordered below the critical temperature. The iron accumulation process is different in hereditary spherocytosis and hemosiderosis. This fact may be the reason of different iron crystallization.

Keywords

Iron Spleen Diffraction Magnetic properties 

Notes

Acknowledgments

Slovak grant agencies (VEGA, projects 1/0073/13, 1/0220/12, APVV-14-0078) are acknowledged for the financial support. The authors gratefully acknowledge the support by the project LO1305 of the Ministry of Education, Youth and Sports of the Czech Republic and the project CZ.1.07/2.3.00/20.0155 and Slovak Research and Development Agency SK-CZ-2013-0042.

References

  1. Allen PD, St Pierre TG, Chua-anusorn W, Ström V, Rao KV (2000) Low-frequency low-field magnetic susceptibility of ferritin and hemosiderin. Biochim Biophys Acta 1500:186–196CrossRefPubMedGoogle Scholar
  2. Arosio P, Levi S (2002) Ferritin, iron homeostasis, and oxidative damage. Free Radic Biol Med 33:457–463CrossRefPubMedGoogle Scholar
  3. Biro C, Busikova P, Fujerikova G, El-Hassoun O, Kopaniova A, Caplovicova M, Galfiova P, Sisovsky V, Kopani M, Jakubovsky J (2012a) Iron-rich complexes in human spleen in hereditary spherocytosis. Bratisl Med J 113:214–216CrossRefGoogle Scholar
  4. Biro S, Kopani M, Kopaniova A, Zitnanova I, El-Hassoun O, Minoo P, Kolenova L, Sisovsky V, Caplovicova M, Stvrtina S, Galfiova P, Guller L, Jakubovsky J (2012b) Iron accumulation in human spleen in autoimmune thrombocytopenia and hereditary spherocytosis. Bratisl Med J 113:92–94CrossRefGoogle Scholar
  5. Brem F, Hirt AM, Simon C, Wieser HG, Dobson J (2005) Characterization of iron compounds in tumour tissue from temporal lobe epilepsy patients using low temperature magnetic methods. Biometals 18:191–197CrossRefPubMedGoogle Scholar
  6. Brem F, Stamm G, Hirt AM (2006) Modeling the magnetic behavior of horse spleen ferritin with a two-phase core structure. J Appl Phys 99:123906CrossRefGoogle Scholar
  7. Chambaere D, Govaert A, De Grave E, Harts G, Robbrecht G (1979) A Mössbauer effect study of the quadrupole interaction in paramagnetic chlorine and flurine containing β-FeOOH. J Phys Colloq C2(40):350–352Google Scholar
  8. Chan CS, De Stasio G, Welch SA, Girasole M, Frazer BH, Nesterova MV, Fakra S, Banfield JF (2004) Microbial polysaccharides template assembly of nanocrystal fibers. Science 303:1656–1658CrossRefPubMedGoogle Scholar
  9. Chasteen ND, Harrison PM (1999) Mineralizatiom in Ferritin: an efficient means of ironstorage. J Struct Biol 126:182–194CrossRefPubMedGoogle Scholar
  10. Chua-anusorn W, Webb J, Macey DJ, Pootrakul P, St Pierre TG (1997) The effect of histological processing on the form of iron in iron-loaded human tissues. Biochim Biophys Acta 1360:255–261CrossRefPubMedGoogle Scholar
  11. Clark PR, Chua-anusorn W, St Pierre TG (2003) Proton transverse relaxation rate (R2) images of iron-loaded liver tissuepping local tissue iron concentration with MRI. Magn Resonance Med 49:572–575CrossRefGoogle Scholar
  12. Collingwood JF, Chong RKK, Kasama T, Cervera-Gontard L, Dunin-Borkowski RE, Perry G, Posfai M, Siedlak SL, Simpson ET, Smith MA, Dobson J (2008) Three-dimensional tomographic Imaging and characterization of iron compounds within Alzheimer’s plaque core material. J Alzheimers Dis 14:235–245PubMedGoogle Scholar
  13. Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurences and uses. Wiley, WeinheimCrossRefGoogle Scholar
  14. Cornell RM, Schneider W, Giovanoli R (1989) Phase-transformations in the ferrihydrite–cysteine system. Polyhedron 8:2829–2836CrossRefGoogle Scholar
  15. Dobson J (2001) Nanoscale biogenic iron oxides and neurodegenerative disease. FEBS Lett 496:1–5CrossRefPubMedGoogle Scholar
  16. Dobson J, Grassi P (1996) Magnetic properties of human hippocampal tissue—evaluation of artefact and contamination sources. Brain Res Bull 39:255–259CrossRefPubMedGoogle Scholar
  17. Dubiel SM, Zablotna-Rypien B, Mackey JB (1999) Magnetic properties of human liver and brain ferritin. Eur Biophys J 28:263–267CrossRefPubMedGoogle Scholar
  18. Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633PubMedGoogle Scholar
  19. Galvez N, Fernandez B, Sanchez P, Cuesta R, Ceolin M, Clemente-Leon M, Trasobares S, Lopez-Haro M, Calvino JJ, Stephan O, Dominguez-Vera JM (2008) Comparative structural and chemical studies of ferritin cores with gradual removal of their iron contents. J Am Chem Soc 130:8062–8068CrossRefPubMedGoogle Scholar
  20. Gregor P, Hromec A, Jakubovsky J, Trutzova H, Cipková K, Durdík S, Porubský J, Danihel L, Brezovsky J, Polák S (1996) The spleen in hereditary spherocytosis. Cesk Patol 32:7–11PubMedGoogle Scholar
  21. Hackett S, Chua-anusorn W, Pootrakul P, St Pierre TG (2007) The magnetic susceptibilities of iron deposits in thalassaemic spleen tissue. Biochim Biophys Acta 1772:330–337CrossRefPubMedGoogle Scholar
  22. Harrison PM, Arosio P (1996) Molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1275:161–203CrossRefPubMedGoogle Scholar
  23. Hautot D, Pankhurst QA, Morris CM, Curtis A, Burn J, Dobson J (2007) Preliminary observation of elevated levels of nanocrystalline iron oxide in the basal ganglia of neuroferritinopathy patients. Biochim Biophys Acta 1772:21–25PubMedCentralCrossRefPubMedGoogle Scholar
  24. Hirsh M, Konijn AM, Iancu TC (2002) Acquisition, storage and release of iron by cultured human hepatoma cells. J Hepatol 36:30–38CrossRefPubMedGoogle Scholar
  25. Iancu TC (1989) Iron and neoplasia—ferritin and hemosiderin in tumor-cells. Ultrastruct Pathol 13(573):584Google Scholar
  26. Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ (1992) Magnetite biomineralization in the human brain. Proc Natl Acad Sci USA 89:7683–7687PubMedCentralCrossRefPubMedGoogle Scholar
  27. Kroll E, Winnik FM, Ziolo RF (1996) In situ preparation of nanocrystalline gamma-Fe2O3 in iron(II) cross linked alginate gels. Chem Mater 8:1594CrossRefGoogle Scholar
  28. Marchessault RH, Ricard S, Rioux P (1992) Insitu synthesis of ferrites in lignocellulosics. Carbohydr Res 224:133CrossRefGoogle Scholar
  29. Mavrocordatos D, Fortin D (2002) Quantitative characterization of biotic iron oxides by analytical electron microscopy. Am Miner 87:940–946Google Scholar
  30. Meyrick D, Webb J, Cole C (2002) Iron and iron proteins found in the genetic disease, hereditary spherocytosis. Inorg Chim Acta 339:481–487CrossRefGoogle Scholar
  31. Muxworthy AR (1999) Low-temperature susceptibility and hysteresis of magnetite earth and planetary. Sci Lett 169:51–58Google Scholar
  32. Oshtrakh MI, Alenkina IV, Vinogradov AV, Konstantinova TS, Kuzmann E, Semionkin VA (2013) Mössbauer spectroscopy of the iron cores in human liver ferritin, ferritin in normal human spleen and ferritin in spleen from patient with primary myelofibrosis: preliminary results of comparative analysis. Biometals 26:229–239CrossRefPubMedGoogle Scholar
  33. Oshtrakh MI, Alenkina IV, Kuzmann E, Klencsár Z, Semionkin VA (2014) Anomalous Mössbauer line broadening for nanosized hydrous ferric oxide cores in ferritin and its pharmaceutical analogue Ferrum Lek in the temperature range 295–90 K. J Nanopart Res 16:2363CrossRefGoogle Scholar
  34. Quintana C, Bellefqih S, Laval JY, Guerquin-Kern JL, Wu TD, Avila J, Ferrer I, Arranz R, Patino C (2006) Study of the localization of iron, ferritin, and haemosiderin in Alzheimer’s disease hippocampus by analytical microscopy at the subcellular level. J Struct Biol 153:42–54CrossRefPubMedGoogle Scholar
  35. Raymond L, Revol JF, Ryan DH, Marchessault RH (1994) In-situ synthesis of ferrites in cellulosics. Chem Mater 6:249CrossRefGoogle Scholar
  36. Raymond L, Revol JF, Marchessault RH, Ryan DH (1995) In situ synthesis of ferrites in ionic and neutral cellulose gels. Polymer 36:5035–5043CrossRefGoogle Scholar
  37. Schultheiss-Grassi PP, Dobson J (1999) Magnetic analysis of human brain tissue. Biometals 12:67–72CrossRefPubMedGoogle Scholar
  38. Seldon C, Owen M, Hopkins JM, Peters TJ (1980) Studies on the concentration and intracellular localization of iron proteins in liver biopsy specimens from patients with iron overload with special reference to their role in lysosomal disruption. Br J Haematol 44:593–603CrossRefGoogle Scholar
  39. Sogaard EG, Medenwaldt R, Abraham-Peskir JV (2000) Conditions and rates of biotic and abiotic iron precipitation in selected Danish freshwater plants and microscopic analysis of precipitate morphology. Water Res 34:2675–2682CrossRefGoogle Scholar
  40. Sourty E, Ryan DH, Marchessault RH (1998) Characterization of magnetic membranes based on bacterial and man-made cellulose. Cellulose 5:5CrossRefGoogle Scholar
  41. St Pierre TG, Pollard RK, Dickson DPE, Ward RJ, Peters TJ (1988) A Mossbauer spectroscopic studies of deproteinised, sub-fractionated and reconstituted ferritins—the relationship between hemosiderin and ferritin. Biochim Biophys Acta 952:158–163CrossRefPubMedGoogle Scholar
  42. St Pierre TG, Chua-anusorn W, Webb J, Macey D, Pootrakul P (1998) The form of iron oxide deposits in thalassemic tissues varies between different groups of patients: a comparison between Thai beta thalassemia/hemoglobin E patients and Australian beta-thalassemia patients. Biochim Biophys Acta 1407:51–60CrossRefPubMedGoogle Scholar
  43. Ueda H, Fujimori O, Abe M (1996) Histochemical analysis of acidic glycoconjugates in the endothelium lining the splenic blood vessels in the rat. Arch Histol Cytol 59:389–397CrossRefPubMedGoogle Scholar
  44. Weir MP, Gibson JF, Peters TJ (1984) Biochemical studies on the isolation and characterization of human spleen haemosiderin. Biochem J 223:31–38PubMedCentralCrossRefPubMedGoogle Scholar
  45. Yang C, Bryan AM, Theil EC, Sayers DE, Bowen LH (1986) Structural variations in soluble iron complexes of models for ferritin—an X-ray absorption and mossbauer-spectroscopy comparison of horse spleen ferritin to blutal (iron-chondroitin sulfate) and imferon (iron-dextran). J Inorg Biochem 28:393–405CrossRefPubMedGoogle Scholar
  46. Žák T, Jirásková Y (2006) CONFIT: Mössbauer spectra fitting program. Surf Interface Anal 38:710–714CrossRefGoogle Scholar
  47. Ziolo RF, Giannelis EP, Weinstein BA, Ohoro MP, Ganguly BN, Mehrotra V, Russell MW, Huffman DR (1992) Matrix-mediated synthesis of nanocrystalline gamma-Fe2O3—a new optically transparent magnetic material. Science 257:219–223CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Martin Kopáni
    • 1
  • Marcel Miglierini
    • 2
    • 3
  • Adriana Lančok
    • 4
  • Július Dekan
    • 2
  • Mária Čaplovicová
    • 5
    • 6
  • Ján Jakubovský
    • 7
  • Roman Boča
    • 8
  • Hedviga Mrazova
    • 9
  1. 1.Department of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of MedicineComenius UniversityBratislavaSlovakia
  2. 2.Institute of Nuclear and Physical EngineeringSlovak University of TechnologyBratislavaSlovakia
  3. 3.Regional Centre of Advanced Technologies and MaterialsPalacky UniversityOlomoucCzech Republic
  4. 4.Institute of Inorganic Chemistryv.v.i. AV CRHusinec-RezCzech Republic
  5. 5.Department of Geology of Mineral Deposits, Faculty of Natural ScienceComenius UniversityBratislavaSlovakia
  6. 6.STU Center for NanodiagnosisSlovak University of TechnologyBratislavaSlovakia
  7. 7.Institute of Histology and EmbryologyComenius UniversityBratislavaSlovakia
  8. 8.Department of Chemistry, FPVUniversity of SS Cyril and MethodiusTrnavaSlovakia
  9. 9.Department of Pathology, Faculty of MedicineComenius UniversityBratislavaSlovakia

Personalised recommendations