, Volume 28, Issue 5, pp 879–890 | Cite as

The effects of lanthanum chloride on proliferation and apoptosis of cervical cancer cells: involvement of let-7a and miR-34a microRNAs

  • Lingfang Yu
  • Jieqi Xiong
  • Ling Guo
  • Lifang Miao
  • Sisun Liu
  • Fei GuoEmail author


Lanthanide elements have been documented to possess various biologic effects, and their compounds have been studied intensely for their anti-cancer potential. However, the underlying mechanisms remain largely unknown. In the present study, we propose that the levels of proliferation and apoptosis related microRNAs (miRNAs), let-7a and miR-34a, which mediate the apoptosis of cervical cancer cells, can be affected by the lanthanum ion. Our data showed that LaCl3 inhibited the proliferation and induced the apoptosis of cervical cancer cells both in vivo and in vitro by regulating let-7a, miR-34a and their downstream genes. This study provides novel evidence demonstrating that the anticancer mechanism of lanthanum chloride is partially attributed to miRNAs regulation and establishes an experimental basis for the clinical application of lanthanum chloride as an anti-cancer drug.


Lanthanum chloride MicroRNAs Cervical cancer Let-7a miRNA MiR-34a 



This work was supported by the National Natural Science Foundation of China (30960405, 81160193), the Natural Science Foundation of Jiangxi Province (2010GZY0348, 20121DH80026), the Program of Jiangxi Education Department (GJJ11310) and the Program of Wujiang Science and Technology (WWWK201408). Many thanks to Dr. Keegan for his efforts making the manuscript much better.


  1. Antonini D, Russo MT, De Rosa L et al (2010) Transcriptional repression of miR-34 family contributes to p63-mediated cell cycle progression in epidermal cells. J Invest Dermatol 130:1249–1257CrossRefPubMedGoogle Scholar
  2. Bandi N, Vassella E (2011) miR-34a and miR-15a/16 are co-regulated in non-small cell lung cancer and control cell cycle progression in a synergistic and Rb-dependent manner. Mol Cancer 10:55PubMedCentralCrossRefPubMedGoogle Scholar
  3. Barh D, Malhotra R, Ravi B et al (2010) MicroRNA let-7: an emerging next-generation cancer therapeutic. Curr Oncol 17:70–80PubMedCentralCrossRefPubMedGoogle Scholar
  4. Bommer GT, Gerin I, Feng Y et al (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17:1298–1307CrossRefPubMedGoogle Scholar
  5. Bu L, Yan S, Jin M et al (2002) The gamma S-crystallin gene is mutated in autosomal recessive cataract in mouse. Genomics 80:38–44CrossRefPubMedGoogle Scholar
  6. Calin GA, Sevignani C, Dumitru CD et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004PubMedCentralCrossRefPubMedGoogle Scholar
  7. Corney DC, Hwang C-I, Matoso A, Vogt M, Flesken-Nikitin A, Godwin AK, Kamat AA, Sood AK, Ellenson LH, Hermeking H, Nikitin AY (2010) Frequent downregulation of miR-34 family in human ovarian cancers. Clin Cancer Res 16:1119–1128Google Scholar
  8. Dahiya N, Morin PJ (2010) MicroRNAs in ovarian carcinomas. Endocr-relat Cancer 17:F77–F89PubMedCentralCrossRefPubMedGoogle Scholar
  9. Dai Y, Li J, Li J et al (2002) Effects of rare earth compounds on growth and apoptosis of leukemic cell lines. In vitro cellular & developmental biology. Animal 38:373–375Google Scholar
  10. Dong Q, Meng P, Wang T et al (2010) MicroRNA let-7a inhibits proliferation of human prostate cancer cells in vitro and in vivo by targeting E2F2 and CCND2. PLoS One 5:e10147PubMedCentralCrossRefPubMedGoogle Scholar
  11. Feng Z, Qiu Z, Li Y et al (2002) Protective immunity induced by the anti-idiotypic monoclonal antibody NP30 of Schistosoma japonicum. Chin Med J 115:576–579PubMedGoogle Scholar
  12. He C, Xiong J, Xu X et al (2009) Functional elucidation of MiR-34 in osteosarcoma cells and primary tumor samples. Biochem Biophys Res Commun 388:35–40CrossRefPubMedGoogle Scholar
  13. Heffeter P, Jakupec MA, Korner W et al (2006) Anticancer activity of the lanthanum compound [tris(1,10-phenanthroline)lanthanum(III)]trithiocyanate (KP772; FFC24). Biochem Pharmacol 71:426–440CrossRefPubMedGoogle Scholar
  14. Heffeter P, Jakupec MA, Korner W et al (2007) Multidrug-resistant cancer cells are preferential targets of the new antineoplastic lanthanum compound KP772 (FFC24). Biochem Pharmacol 73:1873–1886PubMedCentralCrossRefPubMedGoogle Scholar
  15. Hermeking H (2010) The miR-34 family in cancer and apoptosis. Cell Death Differ 17:193–199CrossRefPubMedGoogle Scholar
  16. Hwang HW, Mendell JT (2007) MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 96(Suppl):R40–R44PubMedGoogle Scholar
  17. JF Sun (2001) Experimental methodology in animals (Chinese). People Healthy House, BeijingGoogle Scholar
  18. Johnson SM, Grosshans H, Shingara J et al (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647CrossRefPubMedGoogle Scholar
  19. Krzeszinski JY, Wei W, Huynh H et al (2014) miR-34a blocks osteoporosis and bone metastasis by inhibiting osteoclastogenesis and Tgif2. Nature 512:431–435CrossRefPubMedGoogle Scholar
  20. Lee YS, Dutta A (2007) The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 21:1025–1030PubMedCentralCrossRefPubMedGoogle Scholar
  21. Liang Y, Ridzon D, Wong L et al (2007) Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 8:166PubMedCentralCrossRefPubMedGoogle Scholar
  22. Liu SS, Lu D, Miao LF et al (2010) Effects of lanthanum chloride on proliferation and migration of human cervical cancer cell line HeLa cells. Zhonghua fu chan ke za zhi 45:609–613PubMedGoogle Scholar
  23. Liu X, Wei Q, Zhang J et al (2015) Derivation of embryonic stem cells from Kunming mice IVF blastocyst in feeder- and serum-free condition. In vitro Cell Dev Biol Anim 51:541–545CrossRefPubMedGoogle Scholar
  24. Lou WJ, Chen Q, Liu L et al (2010) miR-34 s–a tumor suppression protein p53 highly related microRNA. Yi chuan = Hereditas/Zhongguo yi chuan xue hui bian ji 32:423–430CrossRefPubMedGoogle Scholar
  25. Lu L, Schwartz P, Scarampi L et al (2011) MicroRNA let-7a: a potential marker for selection of paclitaxel in ovarian cancer management. Gynecol Oncol 122:366–371CrossRefPubMedGoogle Scholar
  26. Lujambio A, Calin GA, Villanueva A et al (2008) A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA 105:13556–13561PubMedCentralCrossRefPubMedGoogle Scholar
  27. Misso G, Di Martino MT, De Rosa G et al (2014) Mir-34: a new weapon against cancer? Mol Ther Nucleic Acids 3:e194CrossRefPubMedGoogle Scholar
  28. Nalls D, Tang SN, Rodova M et al (2011) Targeting epigenetic regulation of miR-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells. PLoS One 6:e24099PubMedCentralCrossRefPubMedGoogle Scholar
  29. Nikitina EG, Urazova LN, Stegny VN (2012) MicroRNAs and human cancer. Exp Oncol 34:2–8PubMedGoogle Scholar
  30. Park EY, Chang E, Lee EJ et al (2014) Targeting of miR34a-NOTCH1 axis reduced breast cancer stemness and chemoresistance. Cancer Res 74:7573–7582CrossRefPubMedGoogle Scholar
  31. Roush S, Slack FJ (2008) The let-7 family of microRNAs. Trends cell Biol 18:505–516CrossRefPubMedGoogle Scholar
  32. Shen L, Lan Z, Sun X et al (2010) Proteomic analysis of lanthanum citrate-induced apoptosis in human cervical carcinoma SiHa cells. Biometals 23:1179–1189CrossRefPubMedGoogle Scholar
  33. Shi P, Huang Z (2005) Proteomic detection of changes in protein synthesis induced by lanthanum in BGC-823 human gastric cancer cells. Biometals 18:89–95CrossRefPubMedGoogle Scholar
  34. Shih KK, Qin LX, Tanner EJ et al (2011) A microRNA survival signature (MiSS) for advanced ovarian cancer. Gynecol Oncol 121:444–450CrossRefPubMedGoogle Scholar
  35. Shishodia G, Verma G, Srivastava Y et al (2014) Deregulation of microRNAs Let-7a and miR-21 mediate aberrant STAT3 signaling during human papillomavirus-induced cervical carcinogenesis: role of E6 oncoprotein. BMC Cancer 14:996PubMedCentralCrossRefPubMedGoogle Scholar
  36. Sun F, Fu H, Liu Q et al (2008) Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Lett 582:1564–1568CrossRefPubMedGoogle Scholar
  37. Tarasov V, Jung P, Verdoodt B et al (2007) Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6:1586–1593CrossRefPubMedGoogle Scholar
  38. Tomosugi M, Sowa Y, Yasuda S et al (2012) Retinoblastoma gene-independent G1 phase arrest by flavone, phosphatidylinositol 3-kinase inhibitor, and histone deacetylase inhibitor. Cancer Sci 103:2139–2143CrossRefPubMedGoogle Scholar
  39. Tsang WP, Kwok TT (2008) Let-7a microRNA suppresses therapeutics-induced cancer cell death by targeting caspase-3. Apoptosis 13:1215–1222CrossRefPubMedGoogle Scholar
  40. Vadla B, Kemper K, Alaimo J et al (2012) Lin-28 controls the succession of cell fate choices via two distinct activities. PLoS Genet 8:e1002588PubMedCentralCrossRefPubMedGoogle Scholar
  41. Vogt M, Munding J, Gruner M et al (2011) Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Archiv 458:313–322CrossRefPubMedGoogle Scholar
  42. Wang X, Wang HK, McCoy JP et al (2009) Oncogenic HPV infection interrupts the expression of tumor-suppressive miR-34a through viral oncoprotein E6. RNA 15:637–647PubMedCentralCrossRefPubMedGoogle Scholar
  43. Wang X, Meyers C, Guo M et al (2011) Upregulation of p18Ink4c expression by oncogenic HPV E6 via p53-miR-34a pathway. Int J Cancer 129:1362–1372PubMedCentralCrossRefPubMedGoogle Scholar
  44. Wang DJ, Legesse-Miller A, Johnson EL et al (2012a) Regulation of the let-7a-3 promoter by NF-kappaB. PLoS One 7:e31240PubMedCentralCrossRefPubMedGoogle Scholar
  45. Wang X, Cao L, Wang Y et al (2012b) Regulation of let-7 and its target oncogenes (Review). Oncol Lett 3:955–960PubMedCentralPubMedGoogle Scholar
  46. Wang Y, Hu X, Greshock J et al (2012c) Genomic DNA copy-number alterations of the let-7 family in human cancers. PLoS One 7:e44399PubMedCentralCrossRefPubMedGoogle Scholar
  47. Wu Q, Guo R, Lin M et al (2011) MicroRNA-200a inhibits CD133/1+ ovarian cancer stem cells migration and invasion by targeting E-cadherin repressor ZEB2. Gynecol Oncol 122:149–154CrossRefPubMedGoogle Scholar
  48. Wu J, Yang J, Liu Q et al (2013) Lanthanum induced primary neuronal apoptosis through mitochondrial dysfunction modulated by Ca(2)(+) and Bcl-2 family. Biol Trace Elem Res 152:125–134CrossRefPubMedGoogle Scholar
  49. Xu Z, Gao Y, Huang S et al (2011) A luminescent and mesoporous core–shell structured Gd2O3: Eu(3 +)@nSiO2@mSiO2 nanocomposite as a drug carrier. Dalton Trans 40:4846–4854CrossRefPubMedGoogle Scholar
  50. Xu J, Zhang YX, Yu XQ et al (2013) Lanthanum carbonate for the treatment of hyperphosphatemia in CKD 5D: multicenter, double blind, randomized, controlled trial in mainland China. BMC Nephrol 14:29PubMedCentralCrossRefPubMedGoogle Scholar
  51. Yang Q, Lu JT, Zhou AW et al (2001) Antinociceptive effect of astragalosides and its mechanism of action. Acta Pharmacol Sin 22:809–812PubMedGoogle Scholar
  52. Yu T, Zhao Y, Shi W et al (1997) Effects of maternal oral administration of monosodium glutamate at a late stage of pregnancy on developing mouse fetal brain. Brain Res 747:195–206CrossRefPubMedGoogle Scholar
  53. Yuan XM, Xie FP, Lu ZB et al (1995) The establishment of two cell lines from a mouse uterine cervical carcinoma (U14) and their metastatic phenotype changes. Clin Exp Metastasis 13:463–473CrossRefPubMedGoogle Scholar
  54. Zhang J, Li Y, Hao X et al (2011) Recent progress in therapeutic and diagnostic applications of lanthanides. Mini Rev Med Chem 11:678–694CrossRefPubMedGoogle Scholar
  55. Zhang C, Wen J, Li Z et al (2013) Efficacy and safety of lanthanum carbonate on chronic kidney disease-mineral and bone disorder in dialysis patients: a systematic review. BMC Nephrol 14:226PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Lingfang Yu
    • 1
    • 2
  • Jieqi Xiong
    • 1
    • 3
  • Ling Guo
    • 3
  • Lifang Miao
    • 4
  • Sisun Liu
    • 4
  • Fei Guo
    • 1
    Email author
  1. 1.Burns InstituteThe First Affiliated Hospital of Nanchang UniversityNanchangChina
  2. 2.Department of Obstetrics and GynecologyThe First People’s Hospital of Wujiang CitySuzhouChina
  3. 3.Department of Obstetrics and GynecologyJiangxi Maternal and Children Health HospitalNanchangChina
  4. 4.Department of Obstetrics and GynecologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina

Personalised recommendations